Patterning, Transfer, and Tensile Testing of Covalent Organic Framework Films with Nanoscale Thickness

Abstract

Covalent organic frameworks (COFs) are promising materials for a variety of applications, including membrane-based separations, thin-film electronics, and as separators for electrochemical devices. Robust mechanical properties are critical to these applications, but there are no reliable methods for patterning COFs or producing free-standing thin films for direct mechanical testing. Mechanical testing of COFs has only been performed on films supported by a rigid substrate. Here, we present a method for patterning, transferring, and measuring the tensile properties of free-floating nanoscale COF films. We synthesized COF powders by condensation of 1,3,5-tris(4-aminophenyl)benzene (TAPB) and terephthalaldehyde (PDA) and prepared uniform thin films by spin casting from a mixture of trifluoroacetic acid and water. The COF films were then reactivated to recover crystallinity and patterned by plasma etching through a poly(dimethylsiloxane) (PDMS) mask. The films were transferred to the surface of water, and we performed direct tensile tests. We measured a modulus of approximately 1.4 GPa for TAPB-PDA COF and a fracture strain of 2.5%, which is promising for many applications. This work advances the development of COFs for thin-film applications by demonstrating a simple and generally applicable approach to cast, pattern, and transfer COF thin films and to perform direct mechanical analysis.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Zhu, Dongyang, Hu, Zhiqi, Rogers, Tanya K., et al.. "Patterning, Transfer, and Tensile Testing of Covalent Organic Framework Films with Nanoscale Thickness." Chemistry of Materials, 33, no. 17 (2021) American Chemical Society: 6724-6730. https://doi.org/10.1021/acs.chemmater.1c01179.

Has part(s)
Forms part of
Rights
This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by the American Chemical Society.
Link to license
Citable link to this page