Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances
dc.citation.firstpage | 6428 | en_US |
dc.citation.issueNumber | 6 | en_US |
dc.citation.journalTitle | ACS Nano | en_US |
dc.citation.lastpage | 6435 | en_US |
dc.citation.volumeNumber | 9 | en_US |
dc.contributor.author | Wen, Fangfang | en_US |
dc.contributor.author | Zhang, Yue | en_US |
dc.contributor.author | Gottheim, Samuel | en_US |
dc.contributor.author | King, Nicholas S. | en_US |
dc.contributor.author | Zhang, Yu | en_US |
dc.contributor.author | Nordlander, Peter | en_US |
dc.contributor.author | Halas, Naomi J. | en_US |
dc.contributor.org | Laboratory for Nanophotonics | en_US |
dc.date.accessioned | 2016-04-04T21:23:36Z | en_US |
dc.date.available | 2016-04-04T21:23:36Z | en_US |
dc.date.issued | 2015 | en_US |
dc.description.abstract | A charge transfer plasmon (CTP) appears when an optical-frequency conductive pathway between two metallic nanoparticles is established, enabling the transfer of charge between nanoparticles when the plasmon is excited. Here we investigate the properties of the CTP in a nanowire-bridged dimer geometry. Varying the junction geometry controls its conductance, which modifies the resonance energies and scattering intensities of the CTP while also altering the other plasmon modes of the nanostructure. Reducing the junction conductance shifts this resonance to substantially lower energies in the near- and mid-infrared regions of the spectrum. The CTP offers both a high-information probe of optical frequency conductances in nanoscale junctions and a new, unique approach to controllably engineering tunable plasmon modes at infrared wavelengths. | en_US |
dc.identifier.citation | Wen, Fangfang, Zhang, Yue, Gottheim, Samuel, et al.. "Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances." <i>ACS Nano,</i> 9, no. 6 (2015) American Chemical Society: 6428-6435. http://dx.doi.org/10.1021/acsnano.5b02087. | en_US |
dc.identifier.doi | http://dx.doi.org/10.1021/acsnano.5b02087 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/88847 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | American Chemical Society | en_US |
dc.rights | This is an open access article published under an ACS AuthorChoiceᅠLicense, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. | en_US |
dc.rights.uri | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html | en_US |
dc.subject.keyword | charge transfer plasmon | en_US |
dc.subject.keyword | optical antenna | en_US |
dc.subject.keyword | IR plasmon | en_US |
dc.subject.keyword | electric current | en_US |
dc.subject.keyword | single-particle dark-field spectroscopy | en_US |
dc.subject.keyword | electron beam lithography | en_US |
dc.title | Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | publisher version | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- acsnano.5b02087.pdf
- Size:
- 2.88 MB
- Format:
- Adobe Portable Document Format
- Description: