Effect of fabrication processes on BaTiO3 capacitor properties

dc.citation.articleNumber041116
dc.citation.issueNumber4
dc.citation.journalTitleAPL Materials
dc.citation.volumeNumber12
dc.contributor.authorJiang, Yizhe
dc.contributor.authorTian, Zishen
dc.contributor.authorKavle, Pravin
dc.contributor.authorPan, Hao
dc.contributor.authorMartin, Lane W.
dc.contributor.orgRice Advanced Materials Institute
dc.date.accessioned2024-07-25T20:55:13Z
dc.date.available2024-07-25T20:55:13Z
dc.date.issued2024
dc.description.abstractThere is an increasing desire to utilize complex functional electronic materials such as ferroelectrics in next-generation microelectronics. As new materials are considered or introduced in this capacity, an understanding of how we can process these materials into those devices must be developed. Here, the effect of different fabrication processes on the ferroelectric and related properties of prototypical metal oxide (SrRuO3)/ferroelectric (BaTiO3)/metal oxide (SrRuO3) heterostructures is explored. Two different types of etching processes are studied, namely, wet etching of the top SrRuO3 using a NaIO4 solution and dry etching using an Ar+-ion beam (i.e., ion milling). Polarization-electric-field hysteresis loops for capacitors produced using both methods are compared. For the ion-milling process, it is found that the Ar+ beam can introduce defects into the SrRuO3/BaTiO3/SrRuO3 devices and that the milling depth strongly influences the defect level and can induce a voltage imprint on the function. Realizing that such processing approaches may be necessary, work is performed to ameliorate the imprint of the hysteresis loops via ex situ “healing” of the process-induced defects by annealing the ferroelectric material in a barium-and-oxygen-rich environment via a chemical-vapor-deposition-style process. This work provides a pathway for the nanoscale fabrication of these candidate materials for next-generation memory and logic applications.
dc.identifier.citationJiang, Y., Tian, Z., Kavle, P., Pan, H., & Martin, L. W. (2024). Effect of fabrication processes on BaTiO3 capacitor properties. APL Materials, 12(4), 041116. https://doi.org/10.1063/5.0203014
dc.identifier.digital041116_1_5-0203014
dc.identifier.doihttps://doi.org/10.1063/5.0203014
dc.identifier.urihttps://hdl.handle.net/1911/117480
dc.language.isoeng
dc.publisherAIP Publishing
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license.  Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleEffect of fabrication processes on BaTiO3 capacitor properties
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpublisher version
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
041116_1_5-0203014.pdf
Size:
8.91 MB
Format:
Adobe Portable Document Format