Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4

dc.citation.articleNumber5812
dc.citation.journalTitleNature Communications
dc.citation.volumeNumber14
dc.contributor.authorLei, Shiming
dc.contributor.authorAllen, Kevin
dc.contributor.authorHuang, Jianwei
dc.contributor.authorMoya, Jaime M.
dc.contributor.authorWu, Tsz Chun
dc.contributor.authorCasas, Brian
dc.contributor.authorZhang, Yichen
dc.contributor.authorOh, Ji Seop
dc.contributor.authorHashimoto, Makoto
dc.contributor.authorLu, Donghui
dc.contributor.authorDenlinger, Jonathan
dc.contributor.authorJozwiak, Chris
dc.contributor.authorBostwick, Aaron
dc.contributor.authorRotenberg, Eli
dc.contributor.authorBalicas, Luis
dc.contributor.authorBirgeneau, Robert
dc.contributor.authorFoster, Matthew S.
dc.contributor.authorYi, Ming
dc.contributor.authorSun, Yan
dc.contributor.authorMorosan, Emilia
dc.contributor.orgRice Center for Quantum Materials
dc.date.accessioned2024-05-03T15:51:17Z
dc.date.available2024-05-03T15:51:17Z
dc.date.issued2023
dc.description.abstractMagnetic topological semimetals allow for an effective control of the topological electronic states by tuning the spin configuration. Among them, Weyl nodal line semimetals are thought to have the greatest tunability, yet they are the least studied experimentally due to the scarcity of material candidates. Here, using a combination of angle-resolved photoemission spectroscopy and quantum oscillation measurements, together with density functional theory calculations, we identify the square-net compound EuGa4 as a magnetic Weyl nodal ring semimetal, in which the line nodes form closed rings near the Fermi level. The Weyl nodal ring states show distinct Landau quantization with clear spin splitting upon application of a magnetic field. At 2 K in a field of 14 T, the transverse magnetoresistance of EuGa4 exceeds 200,000%, which is more than two orders of magnitude larger than that of other known magnetic topological semimetals. Our theoretical model suggests that the non-saturating magnetoresistance up to 40 T arises as a consequence of the nodal ring state.
dc.identifier.citationLei, S., Allen, K., Huang, J., Moya, J. M., Wu, T. C., Casas, B., Zhang, Y., Oh, J. S., Hashimoto, M., Lu, D., Denlinger, J., Jozwiak, C., Bostwick, A., Rotenberg, E., Balicas, L., Birgeneau, R., Foster, M. S., Yi, M., Sun, Y., & Morosan, E. (2023). Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4. Nature Communications, 14(1), 5812. https://doi.org/10.1038/s41467-023-40767-z
dc.identifier.digitals41467-023-40767-z
dc.identifier.doihttps://doi.org/10.1038/s41467-023-40767-z
dc.identifier.urihttps://hdl.handle.net/1911/115605
dc.language.isoeng
dc.publisherSpringer Nature
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleWeyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpublisher version
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-023-40767-z.pdf
Size:
3.47 MB
Format:
Adobe Portable Document Format