Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4

dc.citation.articleNumber5812en_US
dc.citation.journalTitleNature Communicationsen_US
dc.citation.volumeNumber14en_US
dc.contributor.authorLei, Shimingen_US
dc.contributor.authorAllen, Kevinen_US
dc.contributor.authorHuang, Jianweien_US
dc.contributor.authorMoya, Jaime M.en_US
dc.contributor.authorWu, Tsz Chunen_US
dc.contributor.authorCasas, Brianen_US
dc.contributor.authorZhang, Yichenen_US
dc.contributor.authorOh, Ji Seopen_US
dc.contributor.authorHashimoto, Makotoen_US
dc.contributor.authorLu, Donghuien_US
dc.contributor.authorDenlinger, Jonathanen_US
dc.contributor.authorJozwiak, Chrisen_US
dc.contributor.authorBostwick, Aaronen_US
dc.contributor.authorRotenberg, Elien_US
dc.contributor.authorBalicas, Luisen_US
dc.contributor.authorBirgeneau, Roberten_US
dc.contributor.authorFoster, Matthew S.en_US
dc.contributor.authorYi, Mingen_US
dc.contributor.authorSun, Yanen_US
dc.contributor.authorMorosan, Emiliaen_US
dc.contributor.orgRice Center for Quantum Materialsen_US
dc.date.accessioned2024-05-03T15:51:17Zen_US
dc.date.available2024-05-03T15:51:17Zen_US
dc.date.issued2023en_US
dc.description.abstractMagnetic topological semimetals allow for an effective control of the topological electronic states by tuning the spin configuration. Among them, Weyl nodal line semimetals are thought to have the greatest tunability, yet they are the least studied experimentally due to the scarcity of material candidates. Here, using a combination of angle-resolved photoemission spectroscopy and quantum oscillation measurements, together with density functional theory calculations, we identify the square-net compound EuGa4 as a magnetic Weyl nodal ring semimetal, in which the line nodes form closed rings near the Fermi level. The Weyl nodal ring states show distinct Landau quantization with clear spin splitting upon application of a magnetic field. At 2 K in a field of 14 T, the transverse magnetoresistance of EuGa4 exceeds 200,000%, which is more than two orders of magnitude larger than that of other known magnetic topological semimetals. Our theoretical model suggests that the non-saturating magnetoresistance up to 40 T arises as a consequence of the nodal ring state.en_US
dc.identifier.citationLei, S., Allen, K., Huang, J., Moya, J. M., Wu, T. C., Casas, B., Zhang, Y., Oh, J. S., Hashimoto, M., Lu, D., Denlinger, J., Jozwiak, C., Bostwick, A., Rotenberg, E., Balicas, L., Birgeneau, R., Foster, M. S., Yi, M., Sun, Y., & Morosan, E. (2023). Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4. Nature Communications, 14(1), 5812. https://doi.org/10.1038/s41467-023-40767-zen_US
dc.identifier.digitals41467-023-40767-zen_US
dc.identifier.doihttps://doi.org/10.1038/s41467-023-40767-zen_US
dc.identifier.urihttps://hdl.handle.net/1911/115605en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleWeyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4en_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-023-40767-z.pdf
Size:
3.47 MB
Format:
Adobe Portable Document Format