High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays

dc.citation.firstpage1108en_US
dc.citation.issueNumber1en_US
dc.citation.journalTitleACS Nanoen_US
dc.citation.lastpage1117en_US
dc.citation.volumeNumber10en_US
dc.contributor.authorOlson, Janaen_US
dc.contributor.authorManjavacas, Alejandroen_US
dc.contributor.authorBasu, Tiyashen_US
dc.contributor.authorHuang, Daen_US
dc.contributor.authorSchlather, Andrea E.en_US
dc.contributor.authorZheng, Boben_US
dc.contributor.authorHalas, Naomien_US
dc.contributor.authorNordlander, Peteren_US
dc.contributor.authorLink, Stephanen_US
dc.contributor.orgLaboratory for Nanophotonicsen_US
dc.date.accessioned2016-01-28T17:15:39Zen_US
dc.date.available2016-01-28T17:15:39Zen_US
dc.date.issued2016en_US
dc.description.abstractChromatic devices such as flat panel displays could, in principle, be substantially improved by incorporating aluminum plasmonic nanostructures instead of conventional chromophores that are susceptible to photobleaching. In nanostructure form, aluminum is capable of producing colors that span the visible region of the spectrum while contributing exceptional robustness, low cost, and streamlined manufacturability compatible with semiconductor manufacturing technology. However, individual aluminum nanostructures alone lack the vivid chromaticity of currently available chromophores because of the strong damping of the aluminum plasmon resonance in the visible region of the spectrum. In recent work, we showed that pixels formed by periodic arrays of Al nanostructures yield far more vivid coloration than the individual nanostructures. This progress was achieved by exploiting far-field diffractive coupling, which significantly suppresses the scattering response on the long-wavelength side of plasmonic pixel resonances. In the present work, we show that by utilizing another collective coupling effect, Fano interference, it is possible to substantially narrow theᅠshort-wavelengthᅠside of the pixel spectral response. Together, these two complementary effects provide unprecedented control of plasmonic pixel spectral line shape, resulting in aluminum pixels with far more vivid, monochromatic coloration across the entire RGB color gamut than previously attainable. We further demonstrate that pixels designed in this manner can be used directly as switchable elements in liquid crystal displays and determine the minimum and optimal numbers of nanorods required in an array to achieve good color quality and intensity.en_US
dc.identifier.citationOlson, Jana, Manjavacas, Alejandro, Basu, Tiyash, et al.. "High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays." <i>ACS Nano,</i> 10, no. 1 (2016) American Chemical Society: 1108-1117. http://dx.doi.org/10.1021/acsnano.5b06415.en_US
dc.identifier.doihttp://dx.doi.org/10.1021/acsnano.5b06415en_US
dc.identifier.urihttps://hdl.handle.net/1911/88216en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by the American Chemical Society.en_US
dc.subject.keywordsurface plasmonen_US
dc.subject.keyworddiffractive couplingen_US
dc.subject.keywordFano resonanceen_US
dc.subject.keywordcoloren_US
dc.subject.keywordnanoroden_US
dc.subject.keywordnanoparticle arraysen_US
dc.titleHigh Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displaysen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Olson_Link_ACSNano_2015.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format