Ergodic Schrödinger operators in the infinite measure setting

dc.citation.firstpage873en_US
dc.citation.issueNumber2en_US
dc.citation.journalTitleJournal of Spectral Theoryen_US
dc.citation.lastpage902en_US
dc.citation.volumeNumber11en_US
dc.contributor.authorBoshernitzan, Michaelen_US
dc.contributor.authorDamanik, Daviden_US
dc.contributor.authorFillman, Jakeen_US
dc.contributor.authorLukic, Milivojeen_US
dc.date.accessioned2021-09-21T15:37:33Zen_US
dc.date.available2021-09-21T15:37:33Zen_US
dc.date.issued2021en_US
dc.description.abstractWe develop the basic theory of ergodic Schrödinger operators, which is well known for ergodic probability measures, in the case of a base dynamics on an infinite measure space. This includes the almost sure constancy of the spectrum and the spectral type, the definition and discussion of the density of states measure and the Lyapunov exponent, as well as a version of the Pastur–Ishii theorem. We also give some counterexamples that demonstrate that some results do not extend from the finite measure case to the infinite measure case. These examples are based on some constructions in infinite ergodic theory that may be of independent interest.en_US
dc.identifier.citationBoshernitzan, Michael, Damanik, David, Fillman, Jake, et al.. "Ergodic Schrödinger operators in the infinite measure setting." <i>Journal of Spectral Theory,</i> 11, no. 2 (2021) EMS Press: 873-902. https://doi.org/10.4171/JST/360.en_US
dc.identifier.digital1865625-10-4171-jst-360en_US
dc.identifier.doihttps://doi.org/10.4171/JST/360en_US
dc.identifier.urihttps://hdl.handle.net/1911/111364en_US
dc.language.isoengen_US
dc.publisherEMS Pressen_US
dc.rightsThis work is licensed under a CC BY 4.0 license.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleErgodic Schrödinger operators in the infinite measure settingen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1865625-10-4171-jst-360.pdf
Size:
277.45 KB
Format:
Adobe Portable Document Format