Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 μm, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphene's linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.
Description
Advisor
Degree
Type
Keywords
Citation
Booshehri, L.G., Mielke, C.H., Rickel, D.G., et al.. "Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields." Physical Review B, 85, (2012) American Physical Society: 205407. http://dx.doi.org/10.1103/PhysRevB.85.205407.