Rice Patents
Permanent URI for this collection
This collection includes granted patents (not applications) by Rice faculty, students and staff that list Rice University as the original assignee (owner). For questions, please contact the Kelley Center for Government Information, Data and Geospatial Services by email at govhelp@rice.edu or by phone at 713-348-5483. If you are a Rice inventor and do not find your patent listed, please contact the Kelley Center to provide us with information about your patent.
Please email any comments or suggestions about this collection of Rice patents to govhelp@rice.edu
Visit our guide for more information on patents and local library services.
Please note: The subject search is not meaningful for patents. Instead use the top search box to conduct a keyword search of patents' full text.
Browse
Recent Submissions
Item Method for mathematical language processing via tree embeddings(2024-11-19) Wang, Zichao; Lan, Shiting; Baraniuk, Richard G.; Rice University; University of Massachusetts; United States Patent and Trademark OfficeA method for processing formulae includes encoding a formula by: training, with a server, a model by using a machine learning algorithm with a data set that includes a plurality of formulae; transforming, with a processor, a first formula into a tree format using the trained model; converting, with the processor, the tree format of the first formula into a plurality of lists; and encoding, with the processor, the plurality of lists into a fixed dimension vector by leveraging a stacked attention module; and generating one or more formula candidates by: obtaining, with the processor, input information; and generating, with the processor, one or more second formula candidates based on input information by using the stacked attention module with a tree beam search algorithm.Item Multicomponent plasmonic photocatalysts consisting of a plasmonic antenna and a reactive catalytic surface: the antenna-reactor effect(2024-10-08) Halas, Nancy Jean; Nordlander, Peter; Robatjazi, Hossein; Swearer, Dayne Francis; Zhang, Chao; Zhao, Hangqi; Zhou, Linan; Rice University; United States Patent and Trademark OfficeA multicomponent photocatalyst includes a reactive component optically, electronically, or thermally coupled to a plasmonic material. A method of performing a catalytic reaction includes loading a multicomponent photocatalyst including a reactive component optically, electronically, or thermally coupled to a plasmonic material into a reaction chamber; introducing molecular reactants into the reaction chamber; and illuminating the reaction chamber with a light source.Item Nano-sized boron-doped diamond (BDD) enabled electrodes(2024-09-17) Westerhoff, Paul K.; Garcia-segura, Sergio; Sinha, Shahnawaz; Bansal, Rishabh; Verduzco, Rafael; Wong, Michael S.; Rice University; Arizona Board of Regents on behalf of Arizona State University; United States Patent and Trademark OfficeAn electrode includes an electrically conductive substrate with a coating containing boron-doped diamond (BDD) nanoparticles. Fabricating the electrode can include dispersing BDD nanoparticles in a solvent to yield a suspension, coating a conductive substrate with the suspension, and drying the suspension to yield the electrode. In some cases, fabricating the electrode includes combining BDD nanoparticles with a polymeric resin precursor to yield a mixture including a metal oxide, coating a conductive substrate with the mixture to yield a coated substrate, and calcining the coated substrate to yield a metal oxide coating including BDD nanoparticles. In certain cases, fabricating the electrode includes combining powdered activated carbon with polymeric linkers to yield a polymeric precursor solution, combining BDD nanoparticles with the polymeric precursor solution to yield a mixture, coating a conductive substrate with the mixture to yield a coated substrate, and crosslinking the polymeric linkers to yield the electrode.Item Anodes, cathodes, and separators for batteries and methods to make and use same(2024-09-10) Tour, James M.; Salvatierra, Rodrigo Villegas; Silva, Gladys Anahi Lopez; Rice University; United States Patent and Trademark OfficeAnodes, cathodes, and separators for batteries (electrochemical energy storage devices). The anodes are Li metal anodes having lithiated carbon films (Li-MWCNT) (as dendrite suppressors and protective coatings for the Li metal anodes). The cathodes are sulfurized carbon cathodes. The separators are GNR-coated (or modified) separators. The invention includes each of these separately (as well as in combination both with each other and with other anodes, cathodes, and separators) and the methods of making each of these separately (and in combination). The invention further includes a battery that uses at least one of (a) the anode having a lithiated carbon film, (b) the sulfurized carbon cathode, and (c) the GNR-modified separator in the anode/cathode/separator arrangement. For instance, a full battery can include the sulfurized carbon cathode in combination with the Li-MWCNT anode or a full battery can include the sulfurized carbon cathode in combination with other anodes (such as a GCNT-Li anode).Item Assembly of planar chiral superlattices from achiral building blocks(2024-08-27) Jones, Matthew R.; Cheng, Zhihua; Xing, Yuchen; Rice University; United States Patent and Trademark OfficeThe spontaneous assembly of chiral structures from building blocks that lack chirality is fundamentally important for colloidal chemistry and has implications for the formation of advanced optical materials. Here, we find that purified achiral gold tetrahedron-shaped nanoparticles assemble into two-dimensional superlattices that exhibit planar chirality under a balance of repulsive electrostatic and attractive van der Waals and depletion forces. A model accounting for these interactions shows that the growth of planar structures is kinetically preferred over similar three-dimensional products, explaining their selective formation.Item Flash joule heating synthesis method and compositions thereof(2024-08-06) Tour, James Mitchell; Luong X, Duy; Kittrell, Wilbur Carter; Chen, Weiyin; Rice University; United States Patent and Trademark OfficeMethods for the synthesis of graphene, and more particularly the method of synthesizing graphene by flash Joule heating (FJH). Such methods can be used to synthesize turbostratic graphene (including low-defect turbostratic graphene) in bulk quantities. Such methods can further be used to synthesize composite materials and 2D materials.Item Location information from a receiver in a wireless network(2024-08-27) Mittleman, Daniel; Knightly, Edward; Rice University; Brown University; United States Patent and Trademark OfficeA multi-frequency wireless access device including a first waveguide having a pair of parallel metal plates with open sides and a slot in one of the metal plates, the slot permitting radiation to leak out, the leaked radiation illuminating a range of angles depending on frequency.Item Passive and single-viewpoint 3D imaging system(2024-08-27) Wu, Yicheng; Boominathan, Vivek; Chen, Huaijin; Sankaranarayanan, Aswin C.; Veeraraghavan, Ashok; Rice University; United States Patent and Trademark OfficeA method for a passive single-viewpoint 3D imaging system comprises capturing an image from a camera having one or more phase masks. The method further includes using a reconstruction algorithm, for estimation of a 3D or depth image.Item Facile preparation of carbon nanotube hybrid materials by catalyst solutions(2024-08-13) Tour, James M.; Salvatierra, Rodrigo Villegas; Zakhidov, Dante; Sha, Junwei; Rice University; United States Patent and Trademark OfficeEmbodiments of the present disclosure pertain to methods of making a carbon nanotube hybrid material by depositing a catalyst solution onto a carbon-based material, and growing carbon nanotubes on the carbon-based material such that the grown carbon nanotubes become covalently linked to the carbon-based material through carbon-carbon bonds. The catalyst solution includes a metal component (e.g., iron) and a buffer component (e.g., aluminum) that may be in the form of particles. The metal component of the particle may be in the form of a metallic core or metallic oxide core while the buffer component may be on a surface of the metal component in the form of metal or metal oxides. Further embodiments of the present disclosure pertain to the catalytic particles and carbon nanotube hybrid materials. The carbon nanotube hybrid materials of the present disclosure may be incorporated as electrodes (e.g., anodes or cathodes) in energy storage devices.Item Additive manufacture-assisted method for making structural elements having controlled failure characteristics(2024-06-18) Sajadi, Seyed Mohammad; Meiyazhagan, Ashok Kumar; Boul, Peter; Rahman, Muhammad; Thaemlitz, Carl; Ajayan, Pulickel; Rice University; Saudi Arabian Oil Company; United States Patent and Trademark OfficeA process for making a layered multi-material structural element having controlled mechanical failure characteristics. The process includes the steps of: supplying a cementitious layer and forming a polymer layer on the cementitious layer by additive manufacture such that the polymer layer has a first thickness and the cementitious layer has a second thickness, wherein the polymer layer comprises a polymer and the cementitious layer comprises a cementitious material; and allowing the polymer from the polymer layer to suffuse into the cementitious layer for a period of time to obtain a suffused zone in the cementitious layer such that the suffused zone has a third thickness that is less than half the second thickness.Item Methods of fabricating laser-induced graphene and compositions thereof(2024-06-18) Tour, James M.; Chyan, Yieu; Arnusch, Christopher John; Singh, Swatantra Pratap; Li, Yilun; Luong X, Duy; Kittrell, Carter; Ye, Ruquan; Miller, Jordan; Kinstlinger, Ian; Cofer, Savannah; Rice University; B.G. Negev Technologies and Applications Ltd. at Ben-Gurion University; United States Patent and Trademark OfficeMethods that expand the properties of laser-induced graphene (LIG) and the resulting LIG having the expanded properties. Methods of fabricating laser-induced graphene from materials, which range from natural, renewable precursors (such as cloth or paper) to high performance polymers (like Kevlar). With multiple lasing, however, highly conductive PEI-based LIG could be obtained using both multiple pass and defocus methods. The resulting laser-induced graphene can be used, inter alia, in electronic devices, as antifouling surfaces, in water treatment technology, in membranes, and in electronics on paper and food Such methods include fabrication of LIG in controlled atmospheres, such that, for example, superhydrophobic and superhydrophilic LIG surfaces can be obtained. Such methods further include fabricating laser-induced graphene by multiple lasing of carbon precursors. Such methods further include direct 3D printing of graphene materials from carbon precurors. Application of such LIG include oil/water separation, liquid or gas separations using polymer membranes, anti-icing, microsupercapacitors, supercapacitors, water splitting catalysts, sensors, and flexible electronics.Item Alkali-metal anode with alloy coating applied by friction(2024-05-14) Tour, James M.; Salvatierra, Rodrigo Villegas; Luong, Duy Xuan; Rice University; United States Patent and Trademark OfficeAn electrochemical cell with a lithium-metal anode that suppresses dendrite formation and can be fabricated using a simple, inexpensive, and solvent-free process. The anode is coated with a layer of disordered nanomaterial, saturated with lithium ions, that suppresses dendrite formation during charging. The dendrite-suppression coating can be applied simply using a dry, abrasive technique in which the lithium-metal anode is alternately abraded to roughen the surface and polished using a polishing powder of a material that alloys with the lithium.Item Hypothermic 3D bioprinting of living tissues supported by perfusable vasculature(2024-05-07) Miller, Jordan; Ta, Anderson; Grigoryan, Bagrat; Rice University; United States Patent and Trademark OfficeThe present disclosure provides compositions and methods for producing hydrogel matrix constructs. Methods of using hydrogel matrix constructs for tissue repair and regeneration and for the oxygenation of red blood cells are also disclosed.Item Additive manufacture-assisted method for making structural elements having controlled failure characteristics(2024-05-28) Sajadi, Seyed Mohammad; Meiyazhagan, Ashok Kumar; Boul, Peter; Rahman, Muhammad; Thaemlitz, Carl; Ajayan, Pulickel; Rice University; Saudi Arabian Oil Company; United States Patent and Trademark OfficeA process for making a layered multi-material structural element having controlled mechanical failure characteristics. The process includes the steps of: supplying a cementitious layer and forming a polymer layer on the cementitious layer by additive manufacture such that the polymer layer has a first thickness and the cementitious layer has a second thickness, wherein the polymer layer comprises a polymer and the cementitious layer comprises a cementitious material; and allowing the polymer from the polymer layer to suffuse into the cementitious layer for a period of time to obtain a suffused zone in the cementitious layer such that the suffused zone has a third thickness that is less than half the second thickness.Item Additive manufacture-assisted method for making structural elements having controlled failure characteristics(2024-05-28) Sajadi, Seyed Mohammad; Meiyazhagan, Ashok Kumar; Boul, Peter; Rahman, Muhammad; Thaemlitz, Carl; Ajayan, Pulickel; Rice University; Saudi Arabian Oil Company; United States Patent and Trademark OfficeA process for making a layered multi-material structural element having controlled mechanical failure characteristics. The process includes the steps of: supplying a cementitious layer and forming a polymer layer on the cementitious layer by additive manufacture such that the polymer layer has a first thickness and the cementitious layer has a second thickness, wherein the polymer layer comprises a polymer and the cementitious layer comprises a cementitious material; and allowing the polymer from the polymer layer to suffuse into the cementitious layer for a period of time to obtain a suffused zone in the cementitious layer such that the suffused zone has a third thickness that is less than half the second thickness.Item Multicomponent plasmonic photocatalysts consisting of a plasmonic antenna and a reactive catalytic surface: the antenna-reactor effect(2024-04-16) Halas, Nancy Jean; Nordlander, Peter; Robatjazi, Hossein; Swearer, Dayne Francis; Zhang, Chao; Zhao, Hangqi; Zhou, Linan; Rice University; United States Patent and Trademark OfficeA method of making a multicomponent photocatalyst, includes inducing precipitation from a pre-cursor solution comprising a pre-cursor of a plasmonic material and a pre-cursor of a reactive component to form co-precipitated particles; collecting the co-precipitated particles; and annealing the co-precipitated particles to form the multicomponent photocatalyst comprising a reactive component optically, thermally, or electronically coupled to a plasmonic material.Item Hydrogel delivery of sting immunotherapy for treatment cancer(2024-04-30) Young, Simon; Leach, David; Hartgerink, Jeffrey D.; Rice University; The Board of Regents of the University of Texas System; United States Patent and Trademark OfficeIn one aspect, the present disclosure provides for novel compositions of matter comprising multi domain peptide (MDP) hydrogels and cyclic dinucleotides (CDNs). Also disclosed are method of using such compositions in the treatment of cancer, including in particular the treatment of head and neck cancers, such as those resistant to CDN therapy.Item Laser-induced graphene filters and methods of making and using same(2024-04-16) Tour, James M.; Stanford, Michael G.; Li, John; Chyan, Yieu; Arnusch, Christopher John; Presutti, Steven E.; Rice University; B.G. NEGEV TECHNOLOGIES and APPLICATIONS LTD., at Ben-Gurion University; United States Patent and Trademark OfficeVirus and microbe-killing, self-sterilizing resistive heated air filters and methods of making and using same methods. The air filter is includes laser-induced graphene (LIG), a porous conductive graphene foam formed through photothermal conversion of a polyimide film (or another source or source of polymer or other LIG precursor material) by a laser source. The LIG in the air filter can capture particulates and bacteria. The bacteria cannot proliferate even when submerged in culture medium. Through a periodic Joule-heating mechanism, the filter easily reaches greater than 300° C. This destroys any microorganisms including bacteria, along with molecules that can cause adverse biological reactions and diseases such as viruses, pyrogens, allergens, exotoxins, endotoxins, teichoic acids, mycotoxins, nucleic acids, and prions.Item Three-dimensional (3D) printing of graphene materials(2024-04-30) Tour, James M.; Sha, Junwei; Li, Yilun; Miller, Jordan; Kinstlinger, Ian; Cofer, Savannah; Chyan, Yieu; Rice University; United States Patent and Trademark OfficeThree-dimensional (3D) printing of graphene materials and methods and apparatuses for making same. In some embodiments, combined metal powder and carbon growth sources (such as powder Ni and sucrose) are utilized in the 3D printing process. In other embodiments, metal powders with binders (such as powder Ni and a polymer bases binder) are utilized in the 3D printing process. The metal in the resulting 3D printed composite material can then be etched or otherwise removed yielding the 3D printed graphene materials.Item Determination of fluid-phase-specific petrophysical properties of geological core for oil, water and gas phases(2024-03-05) Vinegar, Eva; Singer, Philip M.; Hirasaki, George J.; Chen, Zeliang; Wang, Xinglin; Vinegar, Harold J.; Rice University; Vinegar Technologies LLC; United States Patent and Trademark OfficeThe following invention is used for determining the relative permeability of a fluid in a rock for three different phases: water, oil, and gas, in both conventional and unconventional formations. The permeability of a phase describes how much it can flow in porous media given a pressure gradient and is useful in evaluating reservoir quality and productivity. The following invention is a method to determine the three-phase relative permeabilities in both conventional and unconventional formations using NMR restricted diffusion measurements on core with NMR-active nuclei, combined with centrifugation of the core. In addition, the tortuosity, pore size (surface-to-volume ratio), fluid-filled porosity, and permeability is determined for each of the three phases in a rock.