Browsing by Author "Stone, Matthew B."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Anisotropic magnon damping by zero-temperature quantum fluctuations in ferromagnetic CrGeTe3(Springer Nature, 2022) Chen, Lebing; Mao, Chengjie; Chung, Jae-Ho; Stone, Matthew B.; Kolesnikov, Alexander I.; Wang, Xiaoping; Murai, Naoki; Gao, Bin; Delaire, Olivier; Dai, PengchengSpin and lattice are two fundamental degrees of freedom in a solid, and their fluctuations about the equilibrium values in a magnetic ordered crystalline lattice form quasiparticles termed magnons (spin waves) and phonons (lattice waves), respectively. In most materials with strong spin-lattice coupling (SLC), the interaction of spin and lattice induces energy gaps in the spin wave dispersion at the nominal intersections of magnon and phonon modes. Here we use neutron scattering to show that in the two-dimensional (2D) van der Waals honeycomb lattice ferromagnetic CrGeTe3, spin waves propagating within the 2D plane exhibit an anomalous dispersion, damping, and breakdown of quasiparticle conservation, while magnons along the c axis behave as expected for a local moment ferromagnet. These results indicate the presence of dynamical SLC arising from the zero-temperature quantum fluctuations in CrGeTe3, suggesting that the observed in-plane spin waves are mixed spin and lattice quasiparticles fundamentally different from pure magnons and phonons.Item Diffusive excitonic bands from frustrated triangular sublattice in a singlet-ground-state system(Springer Nature, 2023) Gao, Bin; Chen, Tong; Wu, Xiao-Chuan; Flynn, Michael; Duan, Chunruo; Chen, Lebing; Huang, Chien-Lung; Liebman, Jesse; Li, Shuyi; Ye, Feng; Stone, Matthew B.; Podlesnyak, Andrey; Abernathy, Douglas L.; Adroja, Devashibhai T.; Duc Le, Manh; Huang, Qingzhen; Nevidomskyy, Andriy H.; Morosan, Emilia; Balents, Leon; Dai, PengchengMagnetic order in most materials occurs when magnetic ions with finite moments arrange in a particular pattern below the ordering temperature. Intriguingly, if the crystal electric field (CEF) effect results in a spin-singlet ground state, a magnetic order can still occur due to the exchange interactions between neighboring ions admixing the excited CEF levels. The magnetic excitations in such a state are spin excitons generally dispersionless in reciprocal space. Here we use neutron scattering to study stoichiometric Ni2Mo3O8, where Ni2+ ions form a bipartite honeycomb lattice comprised of two triangular lattices, with ions subject to the tetrahedral and octahedral crystalline environment, respectively. We find that in both types of ions, the CEF excitations have nonmagnetic singlet ground states, yet the material has magnetic order. Furthermore, CEF spin excitons from the tetrahedral sites form a dispersive diffusive pattern around the Brillouin zone boundary, likely due to spin entanglement and geometric frustrations.Item Magnetic Field Effect on Topological Spin Excitations in CrI3(American Physical Society, 2021) Chen, Lebing; Chung, Jae-Ho; Stone, Matthew B.; Kolesnikov, Alexander I.; Winn, Barry; Garlea, V. Ovidiu; Abernathy, Douglas L.; Gao, Bin; Augustin, Mathias; Santos, Elton J. G.; Dai, PengchengThe search for topological spin excitations in recently discovered two-dimensional (2D) van der Waals (vdW) magnetic materials is important because of their potential applications in dissipationless spintronics. In the 2D vdW ferromagnetic (FM) honeycomb lattice CrI3 (TC=61 K), acoustic and optical spin waves are found to be separated by a gap at the Dirac points. The presence of such a gap is a signature of topological spin excitations if it arises from the next-nearest-neighbor (NNN) Dzyaloshinskii-Moriya (DM) or bond-angle-dependent Kitaev interactions within the Cr honeycomb lattice. Alternatively, the gap is suggested to arise from an electron correlation effect not associated with topological spin excitations. Here, we use inelastic neutron scattering to conclusively demonstrate that the Kitaev interactions and electron correlation effects cannot describe spin waves, Dirac gaps, and their in-plane magnetic field dependence. Our results support the idea that the DM interactions are the microscopic origin of the observed Dirac gap. Moreover, we find that the nearest-neighbor (NN) magnetic exchange interactions along the c axis are antiferromagnetic (AF), and the NNN interactions are FM. Therefore, our results unveil the origin of the observed c-axis AF order in thin layers of CrI3, firmly determine the microscopic spin interactions in bulk CrI3, and provide a new understanding of topology-driven spin excitations in 2D vdW magnets.Item Neutron spin resonance as a probe of Fermi surface nesting and superconducting gap symmetry in Ba0.67K0.33(Fe1−xCox)2As2(American Physical Society, 2018) Zhang, Rui; Wang, Weiyi; Maier, Thomas A.; Wang, Meng; Stone, Matthew B.; Chi, Songxue; Winn, Barry; Dai, PengchengWe use inelastic neutron scattering to study the energy and wave-vector dependence of the superconductivity-induced resonance in hole-doped Ba0.67K0.33(Fe1−xCox)2As2 (x=0 and 0.08 with Tc≈37 and 28 K, respectively). In previous work on electron-doped Ba(Fe0.963Ni0.037)2As2 (TN=26K and Tc=17 K), the resonance is found to peak sharply at the antiferromagnetic (AF) ordering wave vector QAF along the longitudinal direction, but disperses upwards away from QAF along the transverse direction [Kim et al., Phys. Rev. Lett. 110, 177002 (2013)]. For hole-doped x=0 and 0.08 without AF order, we find that the resonance displays a ringlike upward dispersion away from QAFalong both the longitudinal and transverse directions. By comparing these results with calculations using the random phase approximation, we conclude that the dispersive resonance is a direct signature of isotropic superconducting gaps arising from nested hole-electron Fermi surfaces.Item Spin excitations in metallic kagome lattice FeSn and CoSn(Springer Nature, 2021) Xie, Yaofeng; Chen, Lebing; Chen, Tong; Wang, Qi; Yin, Qiangwei; Stewart, J. Ross; Stone, Matthew B.; Daemen, Luke L.; Feng, Erxi; Cao, Huibo; Lei, Hechang; Yin, Zhiping; MacDonald, Allan H.; Dai, PengchengIn two-dimensional (2D) metallic kagome lattice materials, destructive interference of electronic hopping pathways around the kagome bracket can produce nearly localized electrons, and thus electronic bands that are flat in momentum space. When ferromagnetic order breaks the degeneracy of the electronic bands and splits them into the spin-up majority and spin-down minority electronic bands, quasiparticle excitations between the spin-up and spin-down flat bands should form a narrow localized spin-excitation Stoner continuum coexisting with well-defined spin waves in the long wavelengths. Here we report inelastic neutron scattering studies of spin excitations in 2D metallic kagome lattice antiferromagnetic FeSn and paramagnetic CoSn, where angle resolved photoemission spectroscopy experiments found spin-polarized and nonpolarized flat bands, respectively, below the Fermi level. Our measurements on FeSn and CoSn reveal well-defined spin waves extending above 140 meV and correlated paramagnetic scattering around Γ point below 90 meV, respectively. In addition, we observed non-dispersive excitations at ~170 meV and ~360 meV arising mostly from hydrocarbon scattering of the CYTOP-M used to glue the samples to aluminum holder. Therefore, our results established the evolution of spin excitations in FeSn and CoSn, and identified anomalous flat modes overlooked by the neutron scattering community for many years.Item Topological Spin Excitations in Honeycomb Ferromagnet CrI3(American Physical Society, 2018) Chen, Lebing; Chung, Jae-Ho; Gao, Bin; Chen, Tong; Stone, Matthew B.; Kolesnikov, Alexander I.; Huang, Qingzhen; Dai, PengchengIn two-dimensional honeycomb ferromagnets, bosonic magnon quasiparticles (spin waves) may either behave as massless Dirac fermions or form topologically protected edge states. The key ingredient defining their nature is the next-nearest-neighbor Dzyaloshinskii-Moriya interaction that breaks the inversion symmetry of the lattice and discriminates chirality of the associated spin-wave excitations. Using inelastic neutron scattering, we find that spin waves of the insulating honeycomb ferromagnet CrI3 (TC=61 K) have two distinctive bands of ferromagnetic excitations separated by a ∼4 meV gap at the Dirac points. These results can only be understood by considering a Heisenberg Hamiltonian with Dzyaloshinskii-Moriya interaction, thus providing experimental evidence that spin waves in CrI3 can have robust topological properties potentially useful for dissipationless spintronic applications.Item Topology stabilized fluctuations in a magnetic nodal semimetal(Springer Nature, 2023) Drucker, Nathan C.; Nguyen, Thanh; Han, Fei; Siriviboon, Phum; Luo, Xi; Andrejevic, Nina; Zhu, Ziming; Bednik, Grigory; Nguyen, Quynh T.; Chen, Zhantao; Nguyen, Linh K.; Liu, Tongtong; Williams, Travis J.; Stone, Matthew B.; Kolesnikov, Alexander I.; Chi, Songxue; Fernandez-Baca, Jaime; Nelson, Christie S.; Alatas, Ahmet; Hogan, Tom; Puretzky, Alexander A.; Huang, Shengxi; Yu, Yue; Li, MingdaThe interplay between magnetism and electronic band topology enriches topological phases and has promising applications. However, the role of topology in magnetic fluctuations has been elusive. Here, we report evidence for topology stabilized magnetism above the magnetic transition temperature in magnetic Weyl semimetal candidate CeAlGe. Electrical transport, thermal transport, resonant elastic X-ray scattering, and dilatometry consistently indicate the presence of locally correlated magnetism within a narrow temperature window well above the thermodynamic magnetic transition temperature. The wavevector of this short-range order is consistent with the nesting condition of topological Weyl nodes, suggesting that it arises from the interaction between magnetic fluctuations and the emergent Weyl fermions. Effective field theory shows that this topology stabilized order is wavevector dependent and can be stabilized when the interband Weyl fermion scattering is dominant. Our work highlights the role of electronic band topology in stabilizing magnetic order even in the classically disordered regime.