Topology stabilized fluctuations in a magnetic nodal semimetal
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The interplay between magnetism and electronic band topology enriches topological phases and has promising applications. However, the role of topology in magnetic fluctuations has been elusive. Here, we report evidence for topology stabilized magnetism above the magnetic transition temperature in magnetic Weyl semimetal candidate CeAlGe. Electrical transport, thermal transport, resonant elastic X-ray scattering, and dilatometry consistently indicate the presence of locally correlated magnetism within a narrow temperature window well above the thermodynamic magnetic transition temperature. The wavevector of this short-range order is consistent with the nesting condition of topological Weyl nodes, suggesting that it arises from the interaction between magnetic fluctuations and the emergent Weyl fermions. Effective field theory shows that this topology stabilized order is wavevector dependent and can be stabilized when the interband Weyl fermion scattering is dominant. Our work highlights the role of electronic band topology in stabilizing magnetic order even in the classically disordered regime.
Description
Advisor
Degree
Type
Keywords
Citation
Drucker, N. C., Nguyen, T., Han, F., Siriviboon, P., Luo, X., Andrejevic, N., Zhu, Z., Bednik, G., Nguyen, Q. T., Chen, Z., Nguyen, L. K., Liu, T., Williams, T. J., Stone, M. B., Kolesnikov, A. I., Chi, S., Fernandez-Baca, J., Nelson, C. S., Alatas, A., … Li, M. (2023). Topology stabilized fluctuations in a magnetic nodal semimetal. Nature Communications, 14(1), 5182. https://doi.org/10.1038/s41467-023-40765-1