Browsing by Author "Rahman, Muhammad M."
Now showing 1 - 13 of 13
Results Per Page
Sort Options
Item Cement-based direct ink for 3D printing of complex architected structures(2021-02-09) Rahman, Muhammad M.; Sajadi, Seyed Mohammad; Kumar, Ashok; Boul, Peter J.; Thaemlitz, Carl; Ajayan, Pulickel M.; Rice University; Saudi Arabian Oil Company, Dhahran (SA); United States Patent and Trademark OfficeProvide is a cement ink for a cement ink for 3D printing (which also includes additive manufacturing) of 3D cement structures and materials. The cement ink includes an American Petroleum Institute (API) Class G cement, a nano-clay, a superplasticizer, a hydroxyethyl cellulose, and a defoamer. The nano-clay may be hydrophilic bentonite. The superplasticizer may be a polycarboxylate ether. The defoamer may be 2-ethyl-1-hexanol. Processes for forming the cement ink and printing 3D cement structures using the cement ink are also provided.Item Damage-tolerant 3D-printed ceramics via conformal coating(AAAS, 2021) Sajadi, Seyed Mohammad; Vásárhelyi, Lívia; Mousavi, Reza; Rahmati, Amir Hossein; Kónya, Zoltán; Kukovecz, Ákos; Arif, Taib; Filleter, Tobin; Vajtai, Robert; Boul, Peter; Pang, Zhenqian; Li, Teng; Tiwary, Chandra Sekhar; Rahman, Muhammad M.; Ajayan, Pulickel M.Ceramic materials, despite their high strength and modulus, are limited in many structural applications due to inherent brittleness and low toughness. Nevertheless, ceramic-based structures, in nature, overcome this limitation using bottom-up complex hierarchical assembly of hard ceramic and soft polymer, where ceramics are packaged with tiny fraction of polymers in an internalized fashion. Here, we propose a far simpler approach of entirely externalizing the soft phase via conformal polymer coating over architected ceramic structures, leading to damage tolerance. Architected structures are printed using silica-filled preceramic polymer, pyrolyzed to stabilize the ceramic scaffolds, and then dip-coated conformally with a thin, flexible epoxy polymer. The polymer-coated architected structures show multifold improvement in compressive strength and toughness while resisting catastrophic failure through a considerable delay of the damage propagation. This surface modification approach allows a simple strategy to build complex ceramic parts that are far more damage-tolerant than their traditional counterparts. Conformal polymer coating leads to damage-tolerant architected ceramic structures with high strength and toughness. Conformal polymer coating leads to damage-tolerant architected ceramic structures with high strength and toughness.Item Direct ink printing of multi-material composite structures(2024-01-02) Sajadi, Seyed Mohammad; Boul, Peter; Tiwary, Chandra Sekhar; Rahman, Muhammad M.; Ajayan, Pulickel M.; Thaemltiz, Carl; William Marsh Rice University; Saudi Arabian Oil Company; United States Patent and Trademark OfficeMethods for fabricating a multi-material composite structure are described. Methods for fabricating a multi-material composite structure include forming a first colloidal ink solution with a first material matrix, water, and a rheology modifying agent; forming a second colloidal ink solution with a second material matrix, water, and a rheology modifying agent; printing a first layer on a substrate using a first printing nozzle carrying the first colloidal ink solution; printing a second layer on top of the first layer using a second printing nozzle carrying the second colloidal ink solution; forming a 3D structure by printing a plurality of layers including the first layer and the second layer printed in an alternating pattern; and sintering the 3D structure to form the multi-material composite structure.Item Epoxy compositions containing polyrotaxane additives having improved impact strength(2025-02-25) Patel, Hasmukh A.; Khater, Ali Zein; Boul, Peter; Ajayan, Pulickel M.; Rahman, Muhammad M.; Rice University; Saudi Arabian Oil Company; United States Patent and Trademark OfficeThis document relates to epoxy compositions containing a sliding-ring polymer (polyrotaxane) additive and a thermally-curable epoxy resin. The epoxy compositions exhibit increased flexural toughness and impact resistance as compared to the same epoxy composition that does not contain the additive. This document also relates to 3D-printed epoxy compositions containing a sliding-ring polymer (polyrotaxane) additive and a thermally-curable epoxy resin.Item Functional wood for carbon dioxide capture(Cell Press, 2023) Roy, Soumyabrata; Philip, Firuz Alam; Oliveira, Eliezer Fernando; Singh, Gurwinder; Joseph, Stalin; Yadav, Ram Manohar; Adumbumkulath, Aparna; Hassan, Sakib; Khater, Ali; Wu, Xiaowei; Bollini, Praveen; Vinu, Ajayan; Shimizu, George; Ajayan, Pulickel M.; Kibria, Md Golam; Rahman, Muhammad M.With increasing global climate change, integrated concepts to innovate sustainable structures that can multiaxially address CO2 mitigation are crucial. Here, we fabricate a functional wood structure with enhanced mechanical performance via a top-down approach incorporating a high-performance metal-organic framework (MOF), Calgary framework 20 (CALF-20). The functional wood with 10% (w/w) CALF-20 can capture CO2 with an overall gravimetric capacity of 0.45 mmol/g at 1 bar and 303 K that scales linearly with the MOF loading. Interestingly, the functional wood surpasses the calculated normalized adsorption capacity of CALF-20 stemming from the mesoporous wood framework, pore geometry modulation in CALF-20, and favorable CO2 uptake interactions. Density functional theory (DFT) calculations elucidate strong interactions between CALF-20 and the cellulose backbone and an understanding of how such interactions can favorably modulate the pore geometry and CO2 physisorption energies. Thus, our work opens an avenue for developing sustainable composites that can be utilized in CO2 capture and structural applications.Item Metal Oxide Catalysts for the Synthesis of Covalent Organic Frameworks and One-Step Preparation of Covalent Organic Framework-Based Composites(American Chemical Society, 2021) Zhu, Yifan; Zhu, Dongyang; Yan, Qianqian; Gao, Guanhui; Xu, Jianan; Liu, Yifeng; Alahakoon, Sampath B.; Rahman, Muhammad M.; Ajayan, Pulickel M.; Egap, Eilaf; Verduzco, Rafael; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water TreatmentThe integration of covalent organic frameworks (COFs) with inorganic materials provides opportunities to develop a new class of composite materials with high surface areas and novel functionalities relevant to photocatalysis, chemical adsorption, and magnetic resonance imaging. However, current methods for the preparation of COF-based composites require challenging, multistep synthetic protocols. Herein, we report a one-pot synthesis approach using a wide range of metal oxides to catalyze the synthesis of highly crystalline and porous COFs. We found that a large variety of metal oxides served as effective catalysts for the synthesis of imine COFs, including niobium(V) oxide (Nb2O5), nickel(II) oxide (NiO), manganese(IV) dioxide (MnO2), ruthenium(IV) oxide (RuO2), zinc(II) oxide (ZnO), lead(II) oxide (PbO), tellurium(IV) dioxide (TeO2), tin(IV) oxide (SnO2), manganese(III) oxide (Mn2O3), zirconium(IV) dioxide (ZrO2), and aluminum(III) oxide (Al2O3). Nb2O5 was effective for the synthesis of a wide range of COFs with different functional groups and pore sizes, and these reactions produced a metal oxide/COF composite. By using Fe3O4 nanoparticles (NPs) as the catalyst, we produced COF-based nanocomposites with Fe3O4 NPs distributed throughout the final COF product. The Fe3O4/COF nanocomposite had a high surface area of 2196 m2 g–1. This work demonstrates a class of novel, low-cost catalysts for synthesizing COFs and a new approach to produce metal oxide/COF composite materials.Item Oxygen Reduction Reaction with Manganese Oxide Nanospheres in Microbial Fuel Cells(American Chemical Society, 2022) Vemuri, Bhuvan; Chilkoor, Govinda; Dhungana, Pramod; Islam, Jamil; Baride, Aravind; Koratkar, Nikhil; Ajayan, Pulickel M.; Rahman, Muhammad M.; Hoefelmeyer, James D.; Gadhamshetty, VenkataramanaOperating microbial fuel cells (MFCs) under extreme pH conditions offers a substantial benefit. Acidic conditions suppress the growth of undesirable methanogens and increase redox potential for oxygen reduction reactions (ORRs), and alkaline conditions increase the electrocatalytic activity. However, operating any fuel cells, including MFCs, is difficult under such extreme pH conditions. Here, we demonstrate a pH-universal ORR ink based on hollow nanospheres of manganese oxide (h-Mn3O4) anchored with multiwalled carbon nanotubes (MWCNTs) on planar and porous forms of carbon electrodes in MFCs (pH = 3–11). Nanospheres of h-Mn3O4 (diameter ∼ 31 nm, shell thickness ∼ 7 nm) on a glassy carbon electrode yielded a highly reproducible ORR activity at pH 3 and 10, based on rotating disk electrode (RDE) tests. A phenomenal ORR performance and long-term stability (∼106 days) of the ink were also observed with four different porous cathodes (carbon cloth, carbon nanofoam paper, reticulated vitreous carbon, and graphite felt) in MFCs. The ink reduced the charge transfer resistance (Rct) to the ORR by 100-fold and 45-fold under the alkaline and acidic conditions, respectively. The current study promotes ORR activity and subsequently the MFC operations under a wide range of pH conditions, including acidic and basic conditions.Item Patterning, Transfer, and Tensile Testing of Covalent Organic Framework Films with Nanoscale Thickness(American Chemical Society, 2021) Zhu, Dongyang; Hu, Zhiqi; Rogers, Tanya K.; Barnes, Morgan; Tseng, Chia-Ping; Mei, Hao; Sassi, Lucas M.; Zhang, Zhuqing; Rahman, Muhammad M.; Ajayan, Pulickel M.; Verduzco, RafaelCovalent organic frameworks (COFs) are promising materials for a variety of applications, including membrane-based separations, thin-film electronics, and as separators for electrochemical devices. Robust mechanical properties are critical to these applications, but there are no reliable methods for patterning COFs or producing free-standing thin films for direct mechanical testing. Mechanical testing of COFs has only been performed on films supported by a rigid substrate. Here, we present a method for patterning, transferring, and measuring the tensile properties of free-floating nanoscale COF films. We synthesized COF powders by condensation of 1,3,5-tris(4-aminophenyl)benzene (TAPB) and terephthalaldehyde (PDA) and prepared uniform thin films by spin casting from a mixture of trifluoroacetic acid and water. The COF films were then reactivated to recover crystallinity and patterned by plasma etching through a poly(dimethylsiloxane) (PDMS) mask. The films were transferred to the surface of water, and we performed direct tensile tests. We measured a modulus of approximately 1.4 GPa for TAPB-PDA COF and a fracture strain of 2.5%, which is promising for many applications. This work advances the development of COFs for thin-film applications by demonstrating a simple and generally applicable approach to cast, pattern, and transfer COF thin films and to perform direct mechanical analysis.Item Rapid, Ambient Temperature Synthesis of Imine Covalent Organic Frameworks Catalyzed by Transition-Metal Nitrates(American Chemical Society, 2021) Zhu, Dongyang; Zhang, Zhuqing; Alemany, Lawrence B.; Li, Yilin; Nnorom, Njideka; Barnes, Morgan; Khalil, Safiya; Rahman, Muhammad M.; Ajayan, Pulickel M.; Verduzco, RafaelCovalent organic frameworks (COFs) are crystalline, porous organic materials that are promising for applications including catalysis, energy storage, electronics, gas storage, water treatment, and drug delivery. Conventional solvothermal synthesis approaches require elevated temperatures, inert environments, and long reaction times. Herein, we show that transition-metal nitrates can catalyze the rapid synthesis of imine COFs under ambient conditions. We first tested a series of transition metals for the synthesis of a model COF and found that all transition-metal nitrates tested produced crystalline COF products even in the presence of oxygen. Fe(NO3)3·9H2O was found to produce the most crystalline product, and crystalline COFs could be produced within 10 min by optimizing the catalyst loading. Fe(NO3)3·9H2O was further tested as a catalyst for six different COF targets varying in linker lengths, substituents, and stabilities, and it effectively catalyzed the synthesis of all imine COFs tested. This catalyst was also successful in the synthesis of 2D imine COFs with different geometries, 3D COFs, and azine-linked COFs. This work demonstrates a simple, low-cost approach for the synthesis of imine COFs and will significantly lower the barrier for the development of imine COFs for applications.Item Sustainable valorization of asphaltenes via flash joule heating(AAAS, 2022) Saadi, M.A.S.R.; Advincula, Paul A.; Thakur, Md Shajedul Hoque; Khater, Ali Zein; Saad, Shabab; Shayesteh Zeraati, Ali; Nabil, Shariful Kibria; Zinke, Aasha; Roy, Soumyabrata; Lou, Minghe; Bheemasetti, Sravani N.; Bari, Md Abdullah Al; Zheng, Yiwen; Beckham, Jacob L.; Gadhamshetty, Venkataramana; Vashisth, Aniruddh; Kibria, Md Golam; Tour, James M.; Ajayan, Pulickel M.; Rahman, Muhammad M.The refining process of petroleum crude oil generates asphaltenes, which poses complicated problems during the production of cleaner fuels. Following refining, asphaltenes are typically combusted for reuse as fuel or discarded into tailing ponds and landfills, leading to economic and environmental disruption. Here, we show that low-value asphaltenes can be converted into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG), via the flash joule heating (FJH) process. After successful conversion, we develop nanocomposites by dispersing AFG into a polymer effectively, which have superior mechanical, thermal, and corrosion-resistant properties compared to the bare polymer. In addition, the life cycle and technoeconomic analysis show that the FJH process leads to reduced environmental impact compared to the traditional processing of asphaltene and lower production cost compared to other FJH precursors. Thus, our work suggests an alternative pathway to the existing asphaltene processing that directs toward a higher value stream while sequestering downstream emissions from the processing.Item Three-dimensional printing of wood(AAAS, 2024) Thakur, Md Shajedul Hoque; Shi, Chen; Kearney, Logan T.; Saadi, M. A. S. R.; Meyer, Matthew D.; Naskar, Amit K.; Ajayan, Pulickel M.; Rahman, Muhammad M.Natural wood has served as a foundational material for buildings, furniture, and architectural structures for millennia, typically shaped through subtractive manufacturing techniques. However, this process often generates substantial wood waste, leading to material inefficiency and increased production costs. A potential opportunity arises if complex wood structures can be created through additive processes. Here, we demonstrate an additive-free, water-based ink made of lignin and cellulose, the primary building blocks of natural wood, that can be used to three-dimensional (3D) print architecturally designed wood structures via direct ink writing. The resulting printed structures, after heat treatment, closely resemble the visual, textural, olfactory, and macro-anisotropic properties, including mechanical properties, of natural wood. Our results pave the way for 3D-printed wooden construction with a sustainable pathway to upcycle/recycle natural wood.Item Transformation of One-Dimensional Linear Polymers into Two-Dimensional Covalent Organic Frameworks Through Sequential Reversible and Irreversible Chemistries(American Chemical Society, 2021) Zhu, Dongyang; Li, Xiaoyi; Li, Yilin; Barnes, Morgan; Tseng, Chia-Ping; Khalil, Safiya; Rahman, Muhammad M.; Ajayan, Pulickel M.; Verduzco, RafaelCovalent organic frameworks (COFs) are crystalline porous materials linked by dynamic covalent bonds. Dynamic chemistries enable the transformation of an initially amorphous network into a porous and crystalline COF. While dynamic chemistries have been leveraged to realize transformations between different types of COFs, including transformations from two-dimensional (2D) to three-dimensional (3D) COFs and insertion of different linking groups, the transformation of linear polymers into COFs has not yet been reported. Herein, we demonstrate an approach to transform linear imine-linked polymers into ketone-linked COFs through a linker replacement strategy with triformylphloroglucinol (TPG). TPG first reacts through dynamic chemistry to replace linkers in the linear polymers and then undergoes irreversible tautomerism to produce ketone linkages. We have analyzed the time-dependent transformation from the linear polymer into COF through powder X-ray diffraction, Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) to understand the transition and substitution mechanisms. This work demonstrates another route to produce COFs through sequential reversible and irreversible chemistries and provides a potential approach to synthesizing COFs through the solution processing of linear polymers followed by transformation into the desired COF structure.Item Understanding fragility and engineering activation stability in two-dimensional covalent organic frameworks(Royal Society of Chemistry, 2022) Zhu, Dongyang; Zhang, Jun-Jie; Wu, Xiaowei; Yan, Qianqian; Liu, Fangxin; Zhu, Yifan; Gao, Xiaodong; Rahman, Muhammad M.; Yakobson, Boris I.; Ajayan, Pulickel M.; Verduzco, RafaelThe sensitivity of covalent organic frameworks (COFs) to pore collapse during activation processes is generally termed activation stability, and activation stability is important for achieving and maintaining COF crystallinity and porosity which are relevant to a variety of applications. However, current understanding of COF stability during activation is insufficient, and prior studies have focused primarily on thermal stability or on the activation stability of other porous materials, such as metal–organic frameworks (MOFs). In this work, we demonstrate and implement a versatile experimental approach to quantify activation stability of COFs and use this to establish a number of relationships between their pore size, the type of pore substituents, pore architecture, and structural robustness. Additionally, density functional theory calculations reveal the impact on both inter-and intra-layer interactions, which govern activation stability, and we demonstrate that activation stability can be systematically tuned using a multivariate synthesis approach involving mixtures of functionalized and unfunctionalized COF building blocks. Our findings provide novel fundamental insights into the activation stability of COFs and offer guidance for the design of more robust COFs.