Sustainable valorization of asphaltenes via flash joule heating

Abstract

The refining process of petroleum crude oil generates asphaltenes, which poses complicated problems during the production of cleaner fuels. Following refining, asphaltenes are typically combusted for reuse as fuel or discarded into tailing ponds and landfills, leading to economic and environmental disruption. Here, we show that low-value asphaltenes can be converted into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG), via the flash joule heating (FJH) process. After successful conversion, we develop nanocomposites by dispersing AFG into a polymer effectively, which have superior mechanical, thermal, and corrosion-resistant properties compared to the bare polymer. In addition, the life cycle and technoeconomic analysis show that the FJH process leads to reduced environmental impact compared to the traditional processing of asphaltene and lower production cost compared to other FJH precursors. Thus, our work suggests an alternative pathway to the existing asphaltene processing that directs toward a higher value stream while sequestering downstream emissions from the processing.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Saadi, M.A.S.R., Advincula, Paul A., Thakur, Md Shajedul Hoque, et al.. "Sustainable valorization of asphaltenes via flash joule heating." Science Advances, 8, no. 46 (2022) AAAS: https://doi.org/10.1126/sciadv.add3555.

Has part(s)
Forms part of
Rights
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
Citable link to this page