Browsing by Author "Liu, Zheng"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Blueshift of the A-exciton peak in folded monolayer 1H-MoS2(American Physical Society, 2013) Crowne, Frank J.; Amani, Matin; Birdwell, A. Glen; Chin, Matthew L.; O'Regan, Terrance P.; Najmaei, Sina; Liu, Zheng; Ajayan, Pulickel M.; Lou, Jun; Dubey, MadanItem Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition(American Institute of Physics, 2013) Amani, Matin; Chin, Matthew L.; Birdwell, A. Glen; O'Regan, Terrance P.; Najmaei, Sina; Liu, Zheng; Ajayan, Pulickel M.; Lou, Jun; Dubey, MadanMolybdenum disulfide (MoS2) field effect transistors (FET) were fabricated on atomically smooth large-area single layers grown by chemical vapor deposition. The layer qualities and physical properties were characterized using high-resolution Raman and photoluminescence spectroscopy, scanning electron microscopy, and atomic force microscopy. Electronic performance of the FET devices was measured using field effect mobility measurements as a function of temperature. The back-gated devices had mobilities of 6.0 cm2/V s at 300K without a high-j dielectric overcoat and increased to 16.1 cm2/V s with a high-j dielectric overcoat. In addition the devices show on/off ratios ranging from 105 to 109.Item Growth methods for controlled large-area fabrication of high-quality graphene analogs(2017-02-28) Najmaei, Sina; Liu, Zheng; Ajayan, Pulickel M.; Lou, Jun; Rice University; United States Patent and Trademark OfficeIn some embodiments, the present disclosure pertains to methods of growing chalcogen-linked metallic films on a surface in a chamber. In some embodiments, the method comprises placing a metal source and a chalcogen source in the chamber, and gradually heating the chamber, where the heating leads to the chemical vapor deposition of the chalcogen source and the metal source onto the surface, and facilitates the growth of the chalcogen-linked metallic film from the chalcogen source and the metal source on the surface. In some embodiments, the chalcogen source comprises sulfur, and the metal source comprises molybdenum trioxide. In some embodiments, the growth of the chalcogen-linked metallic film occurs by formation of nucleation sites on the surface, where the nucleation sites merge to form the chalcogen-linked metallic film. In some embodiments, the formed chalcogen-linked metallic film includes MoS2.Item Multi-endpoint, High-Throughput Study of Nanomaterial Toxicity in Caenorhabditis elegans(American Chemical Society, 2015) Jung, Sang-Kyu; Qu, Xiaolei; Aleman-Meza, Boanerges; Wang, Tianxiao; Riepe, Celeste; Liu, Zheng; Li, Qilin; Zhong, WeiweiThe booming nanotechnology industry has raised public concerns about the environmental health and safety impact of engineered nanomaterials (ENMs). High-throughput assays are needed to obtain toxicity data for the rapidly increasing number of ENMs. Here we present a suite of high-throughput methods to study nanotoxicity in intact animals using Caenorhabditis elegans as a model. At the population level, our system measures food consumption of thousands of animals to evaluate population fitness. At the organism level, our automated system analyzes hundreds of individual animals for body length, locomotion speed, and lifespan. To demonstrate the utility of our system, we applied this technology to test the toxicity of 20 nanomaterials at four concentrations. Only fullerene nanoparticles (nC60), fullerol, TiO2, and CeO2 showed little or no toxicity. Various degrees of toxicity were detected from different forms of carbon nanotubes, graphene, carbon black, Ag, and fumed SiO2 nanoparticles. Aminofullerene and ultraviolet-irradiated nC60 also showed small but significant toxicity. We further investigated the effects of nanomaterial size, shape, surface chemistry, and exposure conditions on toxicity. Our data are publicly available at the open-access nanotoxicity database www.QuantWorm.org/nano.Item Potential Nematode Alarm Pheromone Induces Acute Avoidance in Caenorhabditis elegans(Genetics Society of America, 2017) Zhou, Ying; Loeza-Cabrera, Mario; Liu, Zheng; Aleman-Meza, Boanerges; Nguyen, Julie K.; Jung, Sang-Kyu; Choi, Yuna; Shou, Qingyao; Butcher, Rebecca A.; Zhong, WeiweiIt is crucial for animal survival to detect dangers such as predators. A good indicator of dangers is injury of conspecifics. Here we show that fluids released from injured conspecifics invoke acute avoidance in both free-living and parasitic nematodes. Caenorhabditis elegans avoids extracts from closely related nematode species but not fruit fly larvae. The worm extracts have no impact on animal lifespan, suggesting that the worm extract may function as an alarm instead of inflicting physical harm. Avoidance of the worm extract requires the function of a cGMP signaling pathway that includes the cGMP-gated channel TAX-2/TAX-4 in the amphid sensory neurons ASI and ASK. Genetic evidence indicates that the avoidance behavior is modulated by the neurotransmitters GABA and serotonin, two common targets of anxiolytic drugs. Together, these data support a model that nematodes use a nematode-specific alarm pheromone to detect conspecific injury.Item Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes(Springer Nature, 2016) Liu, Fucai; You, Lu; Seyler, Kyle L.; Li, Xiaobao; Yu, Peng; Lin, Junhao; Wang, Xuewen; Zhou, Jiadong; Wang, Hong; He, Haiyong; Pantelides, Sokrates T.; Zhou, Wu; Sharma, Pradeep; Xu, Xiaodong; Ajayan, Pulickel M.; Wang, Junling; Liu, ZhengTwo-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP2S6 (CIPS) with a transition temperature of ~320 K. Switchable polarization is observed in thin CIPS of ~4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio of ~100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity.Item Strong nonlinear optical processes with extraordinary polarization anisotropy in inversion-symmetry broken two-dimensional PdPSe(Springer Nature, 2024) Zhu, Song; Duan, Ruihuan; Xu, Xiaodong; Sun, Fangyuan; Chen, Wenduo; Wang, Fakun; Li, Siyuan; Ye, Ming; Zhou, Xin; Cheng, Jinluo; Wu, Yao; Liang, Houkun; Kono, Junichiro; Li, Xingji; Liu, Zheng; Wang, Qi JieNonlinear optical activities, especially second harmonic generation (SHG), are key phenomena in inversion-symmetry-broken two-dimensional (2D) transition metal dichalcogenides (TMDCs). On the other hand, anisotropic nonlinear optical processes are important for unique applications in nano-nonlinear photonic devices with polarization functions, having become one of focused research topics in the field of nonlinear photonics. However, the strong nonlinearity and strong optical anisotropy do not exist simultaneously in common 2D materials. Here, we demonstrate strong second-order and third-order susceptibilities of 64 pm/V and 6.2×10−19 m2/V2, respectively, in the even-layer PdPSe, which has not been discovered in other common TMDCs (e.g., MoS2). Strikingly, it also simultaneously exhibited strong SHG anisotropy with an anisotropic ratio of ~45, which is the largest reported among all 2D materials to date, to the best of our knowledge. In addition, the SHG anisotropy ratio can be harnessed from 0.12 to 45 (375 times) by varying the excitation wavelength due to the dispersion of $${\chi }^{(2)}$$values. As an illustrative example, we further demonstrate polarized SHG imaging for potential applications in crystal orientation identification and polarization-dependent spatial encoding. These findings in 2D PdPSe are promising for nonlinear nanophotonic and optoelectronic applications.Item Structure determination of a human virus by the combination of cryo-EM and X-ray crystallography(Springer, 2016) Liu, Zheng; Guu, Tom S.Y.; Cao, Jianhao; Li, Yinyin; Cheng, Lingpeng; Tao, Yizhi Jane; Zhang, JingqiangVirus 3D atomic structures provide insight into our understanding of viral life cycles and the development of antiviral drugs. X-ray crystallography and cryo-EM have been used to determine the atomic structure of viruses. However, limited availability of biological samples, biosafety issues due to virus infection, and sometimes inherent characteristics of viruses, pose difficulties on combining both methods in determining viral structures. These have made solving the high resolution structure of some medically important viruses very challenging. Here, we describe our recently employed protocols for determining the high-resolution structure of the virus-like particle of hepatitis E virus (HEV), a pathogen of viral hepatitis in human. These protocols include utilizing recombinant baculovirus system to generate sufficient amount of virus particles, single-particle cryo-EM to get an intermediate resolution structure as a phasing model, and X-ray crystallography for final atomic structure determination. Our protocols have solved the hepatitis E virus structure to the resolution of 3.5 Å. The combined methodology is generally applicable to other human infectious viruses.Item Using the Plasmon Linewidth To Calculate the Time and Efficiency of Electron Transfer between Gold Nanorods and Graphene(American Chemical Society, 2013) Hoggard, Anneli; Wang, Lin-Yung; Ma, Lulu; Fang, Ying; You, Ge; Olson, Jana; Liu, Zheng; Chang, Wei-Shun; Ajayan, Pulickel M.; Link, Stephan; Laboratory for NanophotonicsWe present a quantitative analysis of the electron transfer between single gold nanorods and monolayer graphene under no electrical bias. Using single-particle dark-field scattering and photoluminescence spectroscopy to access the homogeneous linewidth, we observe broadening of the surface plasmon resonance for gold nanorods on graphene compared to nanorods on a quartz substrate. Because of the absence of spectral plasmon shifts, dielectric interactions between the gold nanorods and graphene are not important and we instead assign the plasmon damping to charge transfer between plasmon-generated hot electrons and the graphene that acts as an efficient acceptor. Analysis of the plasmon linewidth yields an average electron transfer time of 160 ± 30 fs, which is otherwise difficult to measure directly in the time domain with single-particle sensitivity. In comparison to intrinsic hot electron decay and radiative relaxation, we furthermore calculate from the plasmon linewidth that charge transfer between the gold nanorods and the graphene support occurs with an efficiency of ∼10%. Our results are important for future applications of light harvesting with metal nanoparticle plasmons and efficient hot electron acceptors as well as for understanding hot electron transfer in plasmon-assisted chemical reactions.Item Vertical and in-plane heterostructures from WS2/MoS2 monolayers(Nature Publishing Group, 2014) Gong, Yongji; Lin, Junhao; Wang, Xingli; Shi, Gang; Lei, Sidong; Lin, Zhong; Zou, Xiaolong; Ye, Gonglan; Vajtai, Robert; Yakobson, Boris I.; Terrones, Humberto; Terrones, Mauricio; Tay, Beng Kang; Lou, Jun; Pantelides, Sokrates T.; Liu, Zheng; Zhou, Wu; Ajayan, Pulickel M.Layer-by-layer stacking or lateral interfacing of atomic monolayers has opened up unprecedented opportunities to engineer two-dimensional heteromaterials. Fabrication of such artificial heterostructures with atomically clean and sharp interfaces, however, is challenging. Here, we report a one-step growth strategy for the creation of high-quality vertically stacked as well as in-plane interconnected heterostructures of WS2/MoS2 via control of the growth temperature. Vertically stacked bilayers with WS2 epitaxially grown on top of the MoS2 monolayer are formed with preferred stacking order at high temperature. A strong interlayer excitonic transition is observed due to the type II band alignment and to the clean interface of these bilayers. Vapour growth at low temperature, on the other hand, leads to lateral epitaxy of WS2 on MoS2 edges, creating seamless and atomically sharp in-plane heterostructures that generate strong localized photoluminescence enhancement and intrinsic p–n junctions. The fabrication of heterostructures from monolayers, using simple and scalable growth, paves the way for the creation of unprecedented two-dimensional materials with exciting properties.Item WormGender- Open-Source Software for AutomaticCaenorhabditis elegansᅠSex Ratio Measurement(Public Library of Science, 2015) Labocha, Marta K.; Jung, Sang-Kyu; Aleman-Meza, Boanerges; Liu, Zheng; Zhong, WeiweiFast and quantitative analysis of animal phenotypes is one of the major challenges of current biology. Here we report the WormGender open-source software, which is designed for accurate quantification of sex ratio in Caenorhabditis elegans. The software functions include, i) automatic recognition and counting of adult hermaphrodites and males, ii) a manual inspection feature that enables manual correction of errors, and iii) flexibility to use new training images to optimize the software for different imaging conditions. We evaluated the performance of our software by comparing manual and automated assessment of sex ratio. Our data showed that the WormGender software provided overall accurate sex ratio measurements. We further demonstrated the usage of WormGender by quantifying the high incidence of male (him) phenotype in 27 mutant strains. Mutants of nine genes (brc-1, C30G12.6, cep-1, coh-3, him-3, him-5, him-8, skr-1, unc-86) showed significant him phenotype. The WormGender is written in Java and can be installed and run on both Windows and Mac platforms. The source code is freely available together with a user manual and sample data at http://www.QuantWorm.org/. The source code and sample data are also available at http://dx.doi.org/10.6084/m9.figshare.1541248.