Browsing by Author "Gao, Guanhui"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Battery metal recycling by flash Joule heating(AAAS, 2023) Chen, Weiyin; Chen, Jinhang; Bets, Ksenia V.; Salvatierra, Rodrigo V.; Wyss, Kevin M.; Gao, Guanhui; Choi, Chi Hun; Deng, Bing; Wang, Xin; Li, John Tianci; Kittrell, Carter; La, Nghi; Eddy, Lucas; Scotland, Phelecia; Cheng, Yi; Xu, Shichen; Li, Bowen; Tomson, Mason B.; Han, Yimo; Yakobson, Boris I.; Tour, James M.; Welch Institute for Advanced Materials; NanoCarbon Center; Applied Physics Program; Smalley-Curl InstituteThe staggering accumulation of end-of-life lithium-ion batteries (LIBs) and the growing scarcity of battery metal sources have triggered an urgent call for an effective recycling strategy. However, it is challenging to reclaim these metals with both high efficiency and low environmental footprint. We use here a pulsed dc flash Joule heating (FJH) strategy that heats the black mass, the combined anode and cathode, to >2100 kelvin within seconds, leading to ~1000-fold increase in subsequent leaching kinetics. There are high recovery yields of all the battery metals, regardless of their chemistries, using even diluted acids like 0.01 M HCl, thereby lessening the secondary waste stream. The ultrafast high temperature achieves thermal decomposition of the passivated solid electrolyte interphase and valence state reduction of the hard-to-dissolve metal compounds while mitigating diffusional loss of volatile metals. Life cycle analysis versus present recycling methods shows that FJH significantly reduces the environmental footprint of spent LIB processing while turning it into an economically attractive process.Item Branching phenomena in nanostructure synthesis illuminated by the study of Ni-based nanocomposites(Royal Society of Chemisty, 2023) Qiao, Liang; Fu, Zheng; Zhao, Wenxia; Cui, Yan; Xing, Xin; Xie, Yin; Li, Ji; Gao, Guanhui; Xuan, Zhengxi; Liu, Yang; Lee, Chaeeon; Han, Yimo; Cheng, Yingwen; He, Shengbao; Jones, Matthew R.; Swihart, Mark T.Branching phenomena are ubiquitous in both natural and artificial crystallization processes. The branched nanostructures' emergent properties depend upon their structures, but their structural tunability is limited by an inadequate understanding of their formation mechanisms. Here we developed an ensemble of Nickel-Based nano-Composites (NBCs) to investigate branching phenomena in solution-phase synthesis with precision and in depth. NBCs of 24 morphologies, including dots, core@shell dots, hollow shells, clusters, polyhedra, platelets, dendrites, urchins, and dandelions, were synthesized through systematic adjustment of multiple synthesis parameters. Relationships between the synthesis parameters and the resultant morphologies were analyzed. Classical or non-classical models of nucleation, nascent growth, 1D growth, 2D growth, 3D reconstruction, aggregation, and carburization were defined individually and then integrated to provide a holistic view of the formation mechanism of branched NBCs. Finally, guidelines were extracted and verified to guide the rational solution-phase syntheses of branched nanomaterials with emergent biological, chemical, and physical properties for potential applications in immunology, catalysis, energy storage, and optics. Demonstrating a systematic approach for deconvoluting the formation mechanism and enhancing the synthesis tunability, this work is intended to benefit the conception, development, and improvement of analogous artificial branched nanostructures. Moreover, the progress on this front of synthesis science would, hopefully, deepen our understanding of branching phenomena in nature.Item Fluorinated Multi-Walled Carbon Nanotubes Coated Separator Mitigates Polysulfide Shuttle in Lithium-Sulfur Batteries(MDPI, 2023) Salpekar, Devashish; Dong, Changxin; Oliveira, Eliezer F.; Khabashesku, Valery N.; Gao, Guanhui; Ojha, Ved; Vajtai, Robert; Galvao, Douglas S.; Babu, Ganguli; Ajayan, Pulickel M.Li-S batteries still suffer from two of the major challenges: polysulfide shuttle and low inherent conductivity of sulfur. Here, we report a facile way to develop a bifunctional separator coated with fluorinated multiwalled carbon nanotubes. Mild fluorination does not affect the inherent graphitic structure of carbon nanotubes as shown by transmission electron microscopy. Fluorinated carbon nanotubes show an improved capacity retention by trapping/repelling lithium polysulfides at the cathode, while simultaneously acting as the “second current collector”. Moreover, reduced charge-transfer resistance and enhanced electrochemical performance at the cathode-separator interface result in a high gravimetric capacity of around 670 mAh g−1 at 4C. Unique chemical interactions between fluorine and carbon at the separator and the polysulfides, studied using DFT calculations, establish a new direction of utilizing highly electronegative fluorine moieties and absorption-based porous carbons for mitigation of polysulfide shuttle in Li-S batteries.Item High-performance 2D electronic devices enabled by strong and tough two-dimensional polymer with ultra-low dielectric constant(Springer Nature, 2024) Fang, Qiyi; Yi, Kongyang; Zhai, Tianshu; Luo, Shisong; Lin, Chen-yang; Ai, Qing; Zhu, Yifan; Zhang, Boyu; Alvarez, Gustavo A.; Shao, Yanjie; Zhou, Haolei; Gao, Guanhui; Liu, Yifeng; Xu, Rui; Zhang, Xiang; Wang, Yuzhe; Tian, Xiaoyin; Zhang, Honghu; Han, Yimo; Zhu, Hanyu; Zhao, Yuji; Tian, Zhiting; Zhong, Yu; Liu, Zheng; Lou, Jun; Rice Advanced Materials InstituteAs the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-k dielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc. However, existing low-k dielectric materials, such as organosilicate glass or polymeric dielectrics, suffer from poor thermal and mechanical properties. Two-dimensional polymers (2DPs) are considered promising low-k dielectric materials because of their good thermal and mechanical properties, high porosity and designability. Here, we report a chemical-vapor-deposition (CVD) method for growing fluoride rich 2DP-F films on arbitrary substrates. We show that the grown 2DP-F thin films exhibit ultra-low dielectric constant (in plane k = 1.85 and out-of-plane k = 1.82) and remarkable mechanical properties (Young’s modulus > 15 GPa). We also demonstrated the improved performance of monolayer MoS2 field-effect-transistors when utilizing 2DP-F thin films as dielectric substrates.Item Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates(Springer Nature, 2021) Xia, Yang; Zhao, Xunhua; Xia, Chuan; Wu, Zhen-Yu; Zhu, Peng; Kim, Jung Yoon (Timothy); Bai, Xiaowan; Gao, Guanhui; Hu, Yongfeng; Zhong, Jun; Liu, Yuanyue; Wang, HaotianOxygen reduction reaction towards hydrogen peroxide (H2O2) provides a green alternative route for H2O2 production, but it lacks efficient catalysts to achieve high selectivity and activity simultaneously under industrial-relevant production rates. Here we report a boron-doped carbon (B-C) catalyst which can overcome this activity-selectivity dilemma. Compared to the state-of-the-art oxidized carbon catalyst, B-C catalyst presents enhanced activity (saving more than 210 mV overpotential) under industrial-relevant currents (up to 300 mA cm−2) while maintaining high H2O2 selectivity (85–90%). Density-functional theory calculations reveal that the boron dopant site is responsible for high H2O2 activity and selectivity due to low thermodynamic and kinetic barriers. Employed in our porous solid electrolyte reactor, the B-C catalyst demonstrates a direct and continuous generation of pure H2O2 solutions with high selectivity (up to 95%) and high H2O2 partial currents (up to ~400 mA cm−2), illustrating the catalyst’s great potential for practical applications in the future.Item Metal Oxide Catalysts for the Synthesis of Covalent Organic Frameworks and One-Step Preparation of Covalent Organic Framework-Based Composites(American Chemical Society, 2021) Zhu, Yifan; Zhu, Dongyang; Yan, Qianqian; Gao, Guanhui; Xu, Jianan; Liu, Yifeng; Alahakoon, Sampath B.; Rahman, Muhammad M.; Ajayan, Pulickel M.; Egap, Eilaf; Verduzco, Rafael; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water TreatmentThe integration of covalent organic frameworks (COFs) with inorganic materials provides opportunities to develop a new class of composite materials with high surface areas and novel functionalities relevant to photocatalysis, chemical adsorption, and magnetic resonance imaging. However, current methods for the preparation of COF-based composites require challenging, multistep synthetic protocols. Herein, we report a one-pot synthesis approach using a wide range of metal oxides to catalyze the synthesis of highly crystalline and porous COFs. We found that a large variety of metal oxides served as effective catalysts for the synthesis of imine COFs, including niobium(V) oxide (Nb2O5), nickel(II) oxide (NiO), manganese(IV) dioxide (MnO2), ruthenium(IV) oxide (RuO2), zinc(II) oxide (ZnO), lead(II) oxide (PbO), tellurium(IV) dioxide (TeO2), tin(IV) oxide (SnO2), manganese(III) oxide (Mn2O3), zirconium(IV) dioxide (ZrO2), and aluminum(III) oxide (Al2O3). Nb2O5 was effective for the synthesis of a wide range of COFs with different functional groups and pore sizes, and these reactions produced a metal oxide/COF composite. By using Fe3O4 nanoparticles (NPs) as the catalyst, we produced COF-based nanocomposites with Fe3O4 NPs distributed throughout the final COF product. The Fe3O4/COF nanocomposite had a high surface area of 2196 m2 g–1. This work demonstrates a class of novel, low-cost catalysts for synthesizing COFs and a new approach to produce metal oxide/COF composite materials.Item Nondestructive flash cathode recycling(Springer Nature, 2024) Chen, Weiyin; Cheng, Yi; Chen, Jinhang; Bets, Ksenia V.; Salvatierra, Rodrigo V.; Ge, Chang; Li, John Tianci; Luong, Duy Xuan; Kittrell, Carter; Wang, Zicheng; McHugh, Emily A.; Gao, Guanhui; Deng, Bing; Han, Yimo; Yakobson, Boris I.; Tour, James M.; Applied Physics Program;Smalley-Curl Institute;NanoCarbon Center;Rice Advanced Materials InstituteEffective recycling of end-of-life Li-ion batteries (LIBs) is essential due to continuous accumulation of battery waste and gradual depletion of battery metal resources. The present closed-loop solutions include destructive conversion to metal compounds, by destroying the entire three-dimensional morphology of the cathode through continuous thermal treatment or harsh wet extraction methods, and direct regeneration by lithium replenishment. Here, we report a solvent- and water-free flash Joule heating (FJH) method combined with magnetic separation to restore fresh cathodes from waste cathodes, followed by solid-state relithiation. The entire process is called flash recycling. This FJH method exhibits the merits of milliseconds of duration and high battery metal recovery yields of ~98%. After FJH, the cathodes reveal intact core structures with hierarchical features, implying the feasibility of their reconstituting into new cathodes. Relithiated cathodes are further used in LIBs, and show good electrochemical performance, comparable to new commercial counterparts. Life-cycle-analysis highlights that flash recycling has higher environmental and economic benefits over traditional destructive recycling processes.Item Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating(Springer Nature, 2022) Deng, Bing; Wang, Zhe; Chen, Weiyin; Li, John Tianci; Luong, Duy Xuan; Carter, Robert A.; Gao, Guanhui; Yakobson, Boris I.; Zhao, Yufeng; Tour, James M.; Smalley-Curl Institute; NanoCarbon Center and the Welch Institute for Advanced MaterialsNanoscale carbides enhance ultra-strong ceramics and show activity as high-performance catalysts. Traditional lengthy carburization methods for carbide syntheses usually result in coked surface, large particle size, and uncontrolled phase. Here, a flash Joule heating process is developed for ultrafast synthesis of carbide nanocrystals within 1 s. Various interstitial transition metal carbides (TiC, ZrC, HfC, VC, NbC, TaC, Cr2C3, MoC, and W2C) and covalent carbides (B4C and SiC) are produced using low-cost precursors. By controlling pulse voltages, phase-pure molybdenum carbides including β-Mo2C and metastable α-MoC1-x and η-MoC1-x are selectively synthesized, demonstrating the excellent phase engineering ability of the flash Joule heating by broadly tunable energy input that can exceed 3000 K coupled with kinetically controlled ultrafast cooling (>104 K s−1). Theoretical calculation reveals carbon vacancies as the driving factor for topotactic transition of carbide phases. The phase-dependent hydrogen evolution capability of molybdenum carbides is investigated with β-Mo2C showing the best performance.Item Superior mechanical properties of multilayer covalent-organic frameworks enabled by rationally tuning molecular interlayer interactions(PNAS, 2023) Fang, Qiyi; Pang, Zhengqian; Ai, Qing; Liu, Yifeng; Zhai, Tianshu; Steinbach, Doug; Gao, Guanhui; Zhu, Yifan; Li, Teng; Lou, JunTwo-dimensional (2D) covalent-organic frameworks (COFs) with a well-defined and tunable periodic porous skeleton are emerging candidates for lightweight and strong 2D polymeric materials. It remains challenging, however, to retain the superior mechanical properties of monolayer COFs in a multilayer stack. Here, we successfully demonstrated a precise layer control in synthesizing atomically thin COFs, enabling a systematic study of layer-dependent mechanical properties of 2D COFs with two different interlayer interactions. It was shown that the methoxy groups in COFTAPB-DMTP provided enhanced interlayer interactions, leading to layer-independent mechanical properties. In sharp contrast, mechanical properties of COFTAPB-PDA decreased significantly as the layer number increased. We attributed these results to higher energy barriers against interlayer sliding due to the presence of interlayer hydrogen bonds and possible mechanical interlocking in COFTAPB-DMTP, as revealed by density functional theory calculations.Item Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers(Springer Nature, 2023) Zhu, Dongyang; Zhu, Yifan; Chen, Yu; Yan, Qianqian; Wu, Han; Liu, Chun-Yen; Wang, Xu; Alemany, Lawrence B.; Gao, Guanhui; Senftle, Thomas P.; Peng, Yongwu; Wu, Xiaowei; Verduzco, RafaelThree-dimensional (3D) covalent organic frameworks (COFs) possess higher surface areas, more abundant pore channels, and lower density compared to their two-dimensional counterparts which makes the development of 3D COFs interesting from a fundamental and practical point of view. However, the construction of highly crystalline 3D COF remains challenging. At the same time, the choice of topologies in 3D COFs is limited by the crystallization problem, the lack of availability of suitable building blocks with appropriate reactivity and symmetries, and the difficulties in crystalline structure determination. Herein, we report two highly crystalline 3D COFs with pto and mhq-z topologies designed by rationally selecting rectangular-planar and trigonal-planar building blocks with appropriate conformational strains. The pto 3D COFs show a large pore size of 46 Å with an extremely low calculated density. The mhq-z net topology is solely constructed from totally face-enclosed organic polyhedra displaying a precise uniform micropore size of 1.0 nm. The 3D COFs show a high CO2 adsorption capacity at room temperature and can potentially serve as promising carbon capture adsorbents. This work expands the choice of accessible 3D COF topologies, enriching the structural versatility of COFs.Item Vacancy-mediated anomalous phononic and electronic transport in defective half-Heusler ZrNiBi(Springer Nature, 2023) Ren, Wuyang; Xue, Wenhua; Guo, Shuping; He, Ran; Deng, Liangzi; Song, Shaowei; Sotnikov, Andrei; Nielsch, Kornelius; van den Brink, Jeroen; Gao, Guanhui; Chen, Shuo; Han, Yimo; Wu, Jiang; Chu, Ching-Wu; Wang, Zhiming; Wang, Yumei; Ren, ZhifengStudies of vacancy-mediated anomalous transport properties have flourished in diverse fields since these properties endow solid materials with fascinating photoelectric, ferroelectric, and spin-electric behaviors. Although phononic and electronic transport underpin the physical origin of thermoelectrics, vacancy has only played a stereotyped role as a scattering center. Here we reveal the multifunctionality of vacancy in tailoring the transport properties of an emerging thermoelectric material, defective n-type ZrNiBi. The phonon kinetic process is mediated in both propagating velocity and relaxation time: vacancy-induced local soft bonds lower the phonon velocity while acoustic-optical phonon coupling, anisotropic vibrations, and point-defect scattering induced by vacancy shorten the relaxation time. Consequently, defective ZrNiBi exhibits the lowest lattice thermal conductivity among the half-Heusler family. In addition, a vacancy-induced flat band features prominently in its electronic band structure, which is not only desirable for electron-sufficient thermoelectric materials but also interesting for driving other novel physical phenomena. Finally, better thermoelectric performance is established in a ZrNiBi-based compound. Our findings not only demonstrate a promising thermoelectric material but also promote the fascinating vacancy-mediated anomalous transport properties for multidisciplinary explorations.