Faculty Publications
Permanent URI for this collection
This collection includes faculty journal articles deposited per Rice's Open Access Policy and additional faculty work. Items found in this collection can also be found in the authors' departmental faculty publication collections.
Browse
Browsing Faculty Publications by Author "Aarnio, Alicia"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Gemini-LIGHTS: Herbig Ae/Be and Massive T Tauri Protoplanetary Disks Imaged with Gemini Planet Imager(IOP Publishing, 2022) Rich, Evan A.; Monnier, John D.; Aarnio, Alicia; Laws, Anna S. E.; Setterholm, Benjamin R.; Wilner, David J.; Calvet, Nuria; Harries, Tim; Miller, Chris; Davies, Claire L.; Adams, Fred C.; Andrews, Sean M.; Bae, Jaehan; Espaillat, Catherine; Greenbaum, Alexandra Z.; Hinkley, Sasha; Kraus, Stefan; Hartmann, Lee; Isella, Andrea; McClure, Melissa; Oppenheimer, Rebecca; Pérez, Laura M.; Zhu, ZhaohuanWe present the complete sample of protoplanetary disks from the Gemini- Large Imaging with the Gemini Planet Imager Herbig/T Tauri Survey, which observed bright Herbig Ae/Be stars and T Tauri stars in near-infrared polarized light to search for signatures of disk evolution and ongoing planet formation. The 44 targets were chosen based on their near- and mid-infrared colors, with roughly equal numbers of transitional, pre-transitional, and full disks. Our approach explicitly did not favor well-known, “famous” disks or those observed by the Atacama Large Millimeter/submillimeter Array, resulting in a less-biased sample suitable to probe the major stages of disk evolution during planet formation. Our optimized data reduction allowed polarized flux as low as 0.002% of the stellar light to be detected, and we report polarized scattered light around 80% of our targets. We detected point-like companions for 47% of the targets, including three brown dwarfs (two confirmed, one new), and a new super-Jupiter-mass candidate around V1295 Aql. We searched for correlations between the polarized flux and system parameters, finding a few clear trends: the presence of a companion drastically reduces the polarized flux levels, far-IR excess correlates with polarized flux for nonbinary systems, and systems hosting disks with ring structures have stellar masses <3 M⊙. Our sample also included four hot, dusty “FS CMa” systems, and we detected large-scale ( >100 au) scattered light around each, signs of extreme youth for these enigmatic systems. Science-ready images are publicly available through multiple distribution channels using a new FITS file standard that has been jointly developed with members of the Very Large Telescope Spectro-polarimetric High-contrast Exoplanet Research team.