Monovar: single-nucleotide variant detection in single cells
dc.citation.firstpage | 505 | en_US |
dc.citation.journalTitle | Nature Methods | en_US |
dc.citation.lastpage | 507 | en_US |
dc.citation.volumeNumber | 13 | en_US |
dc.contributor.author | Zafar, Hamim | en_US |
dc.contributor.author | Wang, Yong | en_US |
dc.contributor.author | Nakhleh, Luay | en_US |
dc.contributor.author | Navin, Nicholas | en_US |
dc.contributor.author | Chen, Ken | en_US |
dc.date.accessioned | 2016-11-10T22:23:40Z | en_US |
dc.date.available | 2016-11-10T22:23:40Z | en_US |
dc.date.issued | 2016 | en_US |
dc.description.abstract | Current variant callers are not suitable for single-cell DNA sequencing, as they do not account for allelic dropout, false-positive errors and coverage nonuniformity. We developed Monovar (https://bitbucket.org/hamimzafar/monovar), a statistical method for detecting and genotyping single-nucleotide variants in single-cell data. Monovar exhibited superior performance over standard algorithms on benchmarks and in identifying driver mutations and delineating clonal substructure in three different human tumor data sets. | en_US |
dc.identifier.citation | Zafar, Hamim, Wang, Yong, Nakhleh, Luay, et al.. "Monovar: single-nucleotide variant detection in single cells." <i>Nature Methods,</i> 13, (2016) Springer Nature: 505-507. http://dx.doi.org/10.1038/nmeth.3835. | en_US |
dc.identifier.doi | http://dx.doi.org/10.1038/nmeth.3835 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/92701 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer Nature | en_US |
dc.rights | This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Springer Nature. | en_US |
dc.title | Monovar: single-nucleotide variant detection in single cells | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | post-print | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- nihms772408.pdf
- Size:
- 1.05 MB
- Format:
- Adobe Portable Document Format
- Description: