Atomically thin gallium layers from solid-melt exfoliation

dc.citation.articleNumbere1701373en_US
dc.citation.issueNumber3en_US
dc.citation.journalTitleScience Advancesen_US
dc.citation.volumeNumber4en_US
dc.contributor.authorKochat, Vidyaen_US
dc.contributor.authorSamanta, Atanuen_US
dc.contributor.authorZhang, Yuanen_US
dc.contributor.authorBhowmick, Sanjiten_US
dc.contributor.authorManimunda, Praveenaen_US
dc.contributor.authorAsif, Syed Asif S.en_US
dc.contributor.authorStender, Anthony S.en_US
dc.contributor.authorVajtai, Roberten_US
dc.contributor.authorSingh, Abhishek K.en_US
dc.contributor.authorTiwary, Chandra S.en_US
dc.contributor.authorAjayan, Pulickel M.en_US
dc.date.accessioned2018-07-16T18:43:47Zen_US
dc.date.available2018-07-16T18:43:47Zen_US
dc.date.issued2018en_US
dc.description.abstractAmong the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices.en_US
dc.identifier.citationKochat, Vidya, Samanta, Atanu, Zhang, Yuan, et al.. "Atomically thin gallium layers from solid-melt exfoliation." <i>Science Advances,</i> 4, no. 3 (2018) AAAS: https://doi.org/10.1126/sciadv.1701373.en_US
dc.identifier.doihttps://doi.org/10.1126/sciadv.1701373en_US
dc.identifier.urihttps://hdl.handle.net/1911/102438en_US
dc.language.isoengen_US
dc.publisherAAASen_US
dc.rightsThis is an open-access article distributed under the terms of theᅠCreative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use isᅠnotᅠfor commercial advantage and provided the original work is properly cited.en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.titleAtomically thin gallium layers from solid-melt exfoliationen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
e1701373.full.pdf
Size:
3.96 MB
Format:
Adobe Portable Document Format
Description: