Obstructions to the Concordance of Satellite Knots

Date
2012-09-05
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Formulas which derive common concordance invariants for satellite knots tend to lose information regarding the axis a of the satellite operation R(a,J). The Alexander polynomial, the Blanchfield linking form, and Casson-Gordon invariants all fail to distinguish concordance classes of satellites obtained by slightly varying the axis. By applying higher-order invariants and using filtrations of the knot concordance group, satellite concordance may be distinguished by determining which term of the derived series of the fundamental group of the knot complement the axes lie. There is less hope when the axes lie in the same term. We introduce new conditions to distinguish these latter classes by considering the axes in higher-order Alexander modules in three situations. In the first case, we find that R(a,J) and R(b,J) are non-concordant when a and b have distinct orders viewed as elements of the classical Alexander module of R. In the second, we show that R(a,J) and R(b,J) may be distinguished when the classical Blanchfield form of a with itself differs from that of b with itself. Ultimately, this allows us to find infinitely many concordance classes of R(-,J) whenever R has nontrivial Alexander polynomial. Finally, we find sufficient conditions to distinguish these satellites when the axes represent equivalent elements of the classical Alexander module by analyzing higher-order Alexander modules and localizations thereof.

Description
Degree
Doctor of Philosophy
Type
Thesis
Keywords
Geometric topology, Mathematics, Non commutative algebra, Knot theory
Citation

Franklin, Bridget. "Obstructions to the Concordance of Satellite Knots." (2012) Diss., Rice University. https://hdl.handle.net/1911/64620.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page