


Abstract

Obstructions to the Concordance of Satellite Knots

by

Bridget Dawn Franklin

Well-known concordance invariants for a satellite knotR(η, J) tend to be functions

of R and J but depend only weakly on the axis η. The Alexander polynomial,

the Blanchfield linking form, and Casson-Gordon invariants all fail to distinguish

concordance classes of satellites obtained by slightly varying the axes. By applying

higher-order invariants and using filtrations of the knot concordance group, satellite

concordance may be distinguished by determining the term of the derived series of

π1(S3\R) in which the axes lie. There is less hope when the axes lie in the same term.

We introduce new conditions to distinguish these latter classes by considering the axes

in higher-order Alexander modules in three situations. In the first case, we find that

R(η1, J) and R(η2, J) are non-concordant when η1 and η2 have distinct orders in the

classical Alexander module of R. In the second, we show that even when η1 and η2

have the same order, R(η1, J) and R(η2, J) may be distinguished when the classical

Blanchfield form of η1 with itself differs from that of η2 with itself. Ultimately, this

allows us to find infinitely many concordance classes of R(−, J) whenever R has

nontrivial Alexander polynomial. Finally, we find sufficient conditions to distinguish

these satellites when the axes represent equivalent elements of the classical Alexander

module by analyzing higher order Alexander modules and localizations thereof.
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Chapter 1

Motivation

Knot theory has become increasingly important in 3- and 4-manifold topology. We

begin our study of knot concordance and the effect of satellite operations on concor-

dance by discussing the important implications of this field.

A knot is the embedding of an oriented circle into the 3-dimensional sphere, S1 ↪→

S3. If there exists a continuous map h : S1 × [0, 1] → S3 such that ht = h(·, t) is

an embedding for all t, then K0 = h0(S1) and K1 = h1(S1) are said to be isotopic.

The exterior of K is the bounded 3-manifold S3 \K obtained by removing an open

tubular neighborhood of K from S3, and the knot group is the fundamental group of

the knot exterior. As a consequence of Gordon-Lueke, isotopy classes of (unoriented)

knots are determined by the oriented homeomorphism type of their exteriors [GL89].

Thus, knot theory is to a great extent the study of knot exteriors and knot groups.

For any K0 and K1, the connected sum, K0#K1, is the knot obtained by removing

an unknotted arc from each Ki and joining the endpoints via two unknotted arcs such

that orientation respects that of K0 and K1, as in Figure 1.1. The set of knots under
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Figure 1.1: The connected sum of the Trefoil and Figure 8 knots

connected sum forms a commutative monoid, but there is no connected sum inverse.

A generalization of connected sum is a satellite operation, a process which is often

described via infections. In this procedure, one begins with any knot R along with

an unknotted circle η in the complement of R, as on the left-hand side of Figure

1.2. There are two ways to envision infection; the first is more intuitive though

less rigourous. Since η is unknotted in S3, it bounds a disk D2 that is intersected

transversely by strands of R. Given any J , we “infect R by J along η” to yield

the satellite R(η, J). This is done by cutting strands of R intersecting D and tying

the parallel strands into the knot J , as shown on the right-hand side of Figure 1.2

for J = 41. Equivalently, we may think of forming R(η, J) by removing a tubular

neighborhood of η in S3 \R creating a second toroidal boundary component ∂η(S3 \

R∪ η). Identify ∂S3 \ J and ∂η(S3 \R∪ η) such that the longitude λ(J) is identified

with the meridian µ(η) and µ(J) is identified with λ(η)−1. The curve η is the axis,

R is the pattern, and J is the companion of the satellite operation.

The unique knot which bounds a disk in S3 is the trivial knot. When K ⊂

S3 = ∂B4 bounds an embedded disk in B4, K is said to be a slice knot. The slice

disk may be a topologically locally-flat or smoothly embedding of D2 in B4, and K

is called topologically or smoothly slice respectively. We say that K0 and K1 are
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R

γ

J = 41

−→

R(γ, J)

Figure 1.2: The infection of R by the Figure 8 knot.

concordant if there is a (topologically locally-flat or smoothly) embedded annulus

A : S1 × [0, 1] ↪→ S3 × [0, 1] such that A(S1 × {0}) = K0 and A(S1 × {1}) = K1.

Using this concordance annulus, it follows that if K0 and K1 are concordant, then

K0#rK1 is slice, where rK1 is the reverse mirror image of K1. This implies that

the concordance inverse of K is rK justifying the notation −K. The set of knots

modulo concordance forms a commutative group C under connected sum called the

knot concordance group. It may be referred to as the smooth C∞ or topological Ctop

knot concordance group depending on whether whether the concordance annulus is

required to be smoothly or topologically locally-flat embedded respectively. In either

case the structure of C is not well understood.

Most, if not all, known examples of smoothly slice knots are in fact ribbon knots.

A ribbon knot is one which bounds an immersed disk D2 ! S3 whose singularities

are comprised of pairs of arcs {γi, γ′
i} ⊂ D such that γi ⊂ IntD and γ′

i ∩ ∂D = ∂γ′
i.

A ribbon knot is shown to be slice by pushing an open neighborhood in D of each

γi into B4. The ribbon-slice conjecture states that every smoothly slice knot is also
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ribbon [Fox61]. This conjecture remains open.

Recently, knot concordance has become increasingly important to the study of low-

dimensional topology. Efforts to understand the structure of the knot concordance

group have uncovered a great amount of complexity highlighting the difficulty of

classifying 3- and 4-manifolds.

1.1 Knots and Dehn Surgery

Like the fundamental group of a 3-manifold M3, the set of isotopy classes of embed-

dings of S1 in M3 gives clues to the structure of M3. Primarily, knots are thought

of as embeddings in S3, and given any such embedding, one may perform p/q Dehn

surgery to yield a closed 3-manifold.

Definition 1.1. [Rol90, p. 258] The Dehn surgery of a knot K in S3 with surgery

coefficient p/q ∈ Q is obtained by removing a tubular neighborhood of K and replac-

ing it with a solid torus, T = D2 × S1, such that the meridian of ∂T is identified

with the curve in ∂S3 \ K given by pµ(K) + qλ(K) where µ(K) and λ(K) are the

meridian and longitude of K respectively.

This technique may be used to produce a wide variety of interesting 3-manifolds,

including the Poincaré homology sphere, which is given by +1 surgery on the right-

handed trefoil. In later arguments, we consider the 0-surgery, where the meridian

of ∂T is identified with λ(K). This closed manifold, denoted by MK , shares many
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important properties with the knot exterior. In particular,

π1(MK)

π1(MK)(2)
∼=

π1(S3 \K)

π1(S3 \K)(2)
,

where G(2) refers to the second term of the derived series of a group G.

Dehn surgery on knots produces closed manifolds with first Betti number β1 ≤ 1.

By allowing Dehn surgery on each component of a link, L = S1 *S1 * · · ·*S1 ↪→ S3,

more complicated manifolds may be constructed.

Theorem 1.2 (Lickorish-Wallace [Rol90] ). Every closed, orientable, connected 3-

manifold may be obtained by surgery on an oriented link L ⊂ S3. Furthermore, a

surgery presentation may be found such that each Li is unknotted and all surgery

coefficients are +1.

Theorem 1.2 exemplifies the importance of knot (and link) theory in 3-dimensional

topology.

1.2 The Whitney Embedding Theorem

The information encoded by knots not only supplies a wealth of information for the

study of 3-manifolds but is also integral to the study of higher-dimensional spaces. A

major advancement in this field was obtained by Hassler Whitney in 1944.

Theorem 1.3 (Whitney Embedding Theorem [Whi44]). Any n-manifold X may be

smoothly embedded in the Euclidean space R2n.

The proof of this theorem relies upon first being able to find an immersion

f : X ! R2n
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Y

X

D −→ Y

X ′

Figure 1.3: The Whitney Trick.

with only transverse self-intersections. Pairs of singularities are then removed via the

Whitney Trick.

Proposition 1.4 (Whitney Trick). Suppose P p and Qq are locally flat connected

submanifolds of Mp+q embedded such that P and Q intersect transversely. Suppose

that r, s ∈ P ∩Q have opposite signs and that either

1. p ≥ 3, q ≥ 3 and π1(M) = 0, or

2. p = 2, q ≥ 3 and π1(M \Q) = 0.

Then there exist arcs α and β such that Int(α) ⊂ P \ Q, Int(β) ⊂ Q \ P , and

α ∩ β = {r, s}. These arcs bound a locally flat disk D2 with D ∩ (P ∪Q) = ∂D.

Pairs of singularities of the immersion X ! R2n are then removed by pushing X off

itself along the embedded disk guaranteed by the Whitney Trick, as in Figure 1.3.

The Whitney Trick and the Whitney Embedding Theorem have vast implications for

geometric topology of manifolds in dimensions n ≥ 5. For instance, Smale used the

Whitney Trick to prove the h-Cobordism Theorem from which follows the Generalized

Poincaré Conjecture for n ≥ 5 [Sma62]. Unfortunately, the strategy fails in lower
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dimensions since an immersed disk in Rn cannot be isotoped to an embedded disk

for n ≤ 4. One major application of the knot theory is to measure the failure of the

Whitney Trick in dimensions 3 and 4. This raises the question of which embedded

curves in the boundary of a simply connected 4-manifold bound embedded disks.

Given technical issues raised by the smooth 4-dimensional Poincaré Conjecture, we

simplify this question to ask which embedded curves in S3 bound embedded disks in

the 4-ball. This is precisely the study of knot concordance.

1.3 Knot Concordance and Homology Cobordism

In addition to its implications on the Whitney embedding theorem, knot concordance

has an interesting relationship with the study of homology cobordism of 3-manifolds.

For n ≥ 5, the h-cobordism theorem [Sma62] shows that h-cobordism, or “homotopy

cobordism”, plays an important role in the classification of smooth n-manifolds. For

n = 4, the result holds only in the topological category, and in dimension 3, the

question is more ambiguous and is largely dependent on the smooth 4-dimensional

Poincaré conjecture. Instead, low-dimensional topologists study homology cobordism

classes of 3-manifolds.

Definition 1.5. Two n-manifolds M and N are G-homology cobordant if there exists

an (n + 1)-manifold W with boundary ∂W = M * −N such that inclusion of each
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boundary component induces isomorphisms on homology with G coefficients.

H∗(M ;G) H∗(N ;G)

H∗(W ;G)
!!

∼=
""

∼=

It is well-known that if K and K ′ are concordant, there exists a Z-homology

cobordism between MK and MK′ . This cobordism is constructed by first removing a

tubular neighborhood of the concordance annulus A ⊂ S3 × [0, 1]. The exterior of A

may be shown using excision to be a homology cobordism between the knot exteriors,

and the meridians of K and K ′ are isotopic in (S3 × [0, 1])\A. Replacing the annulus

with D2×S1× [0, 1] such that ∂D2× ·× [0, 1] is identified with λ(K) and λ(K ′) when

t = 0, 1 respectively yields the MK and MK′ along the boundary.

The converse of this fact is a long-standing open question. If the 0-surgeries of

K and K ′ are homology cobordant, is K concordant to K ′ (modulo changing the

orientation of K ′)? Recent work of Cochran, Hedden, Horn, and the author resolves

the question in certain categories.

Theorem 1.6 (Cochran-Franklin-Hedden-Horn [CFHH12]). There exist knots whose

zero surgeries are Q-homology cobordant but which are not Q-concordant. There exist

topologically slice knots whose zero surgeries are smoothly Z-homology cobordant but

which are not concordant.

The results of Theorem 1.6 were found by methods similar to those of Chapters

3, 4, and 5 by studying the concordance of satellite knots. The first result, that there

exist knots K and K ′ whose zero-surgeries are Q-homology cobordant but which are
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not rationally concordant, was found by taking account of the linking number of the

axis of the satellite operation with the pattern. It follows that if the pattern is slice,

and the linking number of the axis with the pattern is p, then there exists a Z[1/p]-

homology cobordism between the zero-surgeries of the companion and satellite. By

choosing a similar pattern with winding number 1, this construction yields an integral

homology cobordism, and careful choices of K and K ′ contradict concordance.

Theorem 1.6 implies that the theory of knot concordance is stronger than homol-

ogy cobordism in the classification of 3-manifolds, and the methods used exemplify

the importance of satellite constructions.



Chapter 2

Knot Theory and Its History

2.1 Classical Invariants

Many results in knot theory have been obtained by building complicated knots by

the use of satellite operations. This operation is a generalization of the well-known

connected-sum operation and is a simple way of constructing a new knot from two

old knots. Satellite operations are also closely related to the JSJ-decomposition of

3-manifolds by torii, and many classical and even higher-order knot invariants behave

nicely under the satellite operation.

Invariants of the concordance class of the satellite R(η, J) depend upon those of R

and J but often depend only on the linking number of η with R. By applying higher-

order invariants when 'k(η,R) = 0, concordance information may be recovered by

considering at which level the class represented by η lies in the derived series of the

knot group π1(S3 \ R).

In this thesis, we seek to differentiate the concordance classes of satellites while

10
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varying the axis but fixing the pattern and companion knots. In particular, we take

R to be some fixed ribbon knot and give sufficient conditions such that infection

upon two distinct axes, η1 and η2, by a chosen knot J yields distinct concordance

classes. The methods are based upon classical concordance invariants such as the

Alexander module and Blanchfield linking-form, their higher-order analogues, as well

as higher-order ρ-invariants.

2.1.1 The Alexander Module

One classical invariant used in distinguishing concordance is the Alexander module.

Since each knot exterior has the homology type of a circle, classical homology theory

fails to yield any useful information. Instead, we consider the homology of S̃3 \K,

the infinite cyclic cover of the knot exterior. The group of deck translations is π1(S3 \

K)/π1(S3 \K)(1) = 〈t〉 ∼= Z and is generated by µ(K). We define

H∗(S
3 \K;Z[t, t−1]) ≡ H∗(S̃3 \K;Z).

This is the homology of S3 \K with coefficients twisted by Z[t, t−1] and is viewed as

a right Z[t, t−1]-module via the action [α]t = [µ(K)−1αµ(K)] where µ̃(K) is the lift

of µ(K) in S̃3 \K.

Definition 2.1. The Alexander module of K is AZ(K) ∼= H1(S3 \K;Z[t, t−1]).

Let Σg be a Seifert surface for K, that is, a surface of genus g embedded in S3

with boundary K. The first homology of Σg is generated by 2g curves {e1, . . . , e2g}

in its interior. For any i, we denote by e+i the curve in S3 \Σg given by the pushing ei
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slightly off Σg in the positlve direction as determined by the orientation of Σg. The

Seifert matrix of V is the matrix with entries Vi,j = 'k(ei, e
+
j ). The Seifert matrix

yields a presentation matrix for AZ(K).

Theorem 2.2 ([Lic97, Theorem 6.5]). If V is a Seifert matrix for K, then tV − V ᵀ

is a presentation matrix for AZ(K) as a right Z[t, t−1]-module.

Definition 2.3. The Alexander polynomial of K, ∆K(t), is det(tV − V ᵀ).

The Alexander polynomial is invariant of the choice of Seifert surface Σg for K as well

as the choice of basis for H1(Σg) up to multiplication by a unit of Z[t, t−1]. We have

the following properties of ∆K(t), where
.
= denotes equivalence up to multiplication

by ±tk for some k ∈ Z.

Theorem 2.4 ([Lic97, Theorem 6.10, Proposition 6.11]). If K is a knot with Alexan-

der polynomial ∆K(t), then

1. ∆K(1) = ±1,

2. ∆K(t)
.
= ∆K(t−1), and

3. ∆K#K′(t)
.
= ∆K(t)∆K′(t).

Further results concerning the Alexander module will be useful in our calculations.

Consider the satellite R(η, J). If η has linking number w with R, then the Alexander

polynomial of R(η, J) is given by

∆R(η,J)(t) = ∆R(t)∆J(t
w) (2.1)
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[Sei34]. Many classical knot invariants have similar behavior under satellite opera-

tions. In the case that 'k(η,R) = 0, η represents an element of π1(S3 \ R)(1), and

hence η lifts to the infinite cyclic cover S̃3 \ R. The meridian of J normally generates

π1(S3 \ J) and is identified with a push-off of η in S3 \ R(η, J). Thus the image of

π1(S3 \ J) is contained in π1(S3 \ R(η, J))(1) and lifts to ˜S3 \ R(η, J). Hence as a

special case of (2.1) when w = 0, AZ(R(η, J)) ∼= AZ(R) and ∆R(η,qJ)(t) = ∆R(t).

2.1.2 The Algebraic Concordance Group

Using Seifert matrices of knots, Levine defined the algebraic knot concordance group,

AC. To do so, Levine constructed a homomorphism C φ→ G− ≡ AC where G− is the

cobordism group of Seifert matrices given by

G− = {A ∈ M2n(Z)| det(A− Aᵀ) = ±1}/ ∼ .

The operation on G− is the block sum of matrices denoted by A ⊕ A′. A matrix

A ∈ M2n(Z) is trivial if it is null-cobordant, that is, if there exists an invertible

square matrix Q ∈ M2n(Z) such that QAQᵀ has the form




0n×n Xn×n

Yn×n Zn×n



 . (2.2)

Finally A and A′ are cobordant if A⊕−A′ is null-cobordant. Levine’s homomorphism

φ maps a knot to the cobordism class of its Seifert matrix.

Theorem 2.5 (Levine [Lev69]). φ : C → G− ≡ AC is an epimorphism. Furthermore,

G− ∼= Z∞ ⊕ Z∞
4 ⊕ Z∞

2 .
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Knots in the kernel of φ are said to be algebraically slice and knots with cobordant

Seifert matrices are algebraically concordant. Since algebraically slice knots have null-

cobordant Seifert matrices, their Alexander polynomials have the form

∆K(t)
.
= f(t)f(t−1).

This is easily shown using Theorem 2.4 and (2.2). However, by considering only the

algebraic concordance group, a great amount of structure of C is inevitably lost.

Casson and Gordon were the first to show that Levine’s homomorphism φ was

not an injection. They did this by finding a non-slice knot whose Seifert matrix was

null-cobordant. Their method involved finding characters on the first homology of

MK,m, the m-fold branched cyclic covers of S3 branched over K. The Casson-Gordon

invariants can be used as a secondary obstruction to concordance beyond the algebraic

concordance group. For any charachter χK : H1(MK,m) → Z/pZ where p and m are

prime powers, Casson and Gordon define two invariants [CG78, CG86].

τ(K,χK) ∈ W (C(t), j)⊗ Z,

σ(MK,n,χK) ∈ Q.

Here, W (C(t), j) is the Witt group of C(t) under the involution j : f(t) 1→ f(t−1)

[Lan02, p. 594]. Unfortunately, like the Alexander module, the Casson-Gordon in-

variants do little to distinguish concordance of satellites with a fixed pattern and com-

panion. When K = R(η, J), Litherland gives a formula for τ(K,χK) and σ(MK,n)

based only upon the invariants of R, J and the linking number of η with R [Lit84].

Since our examples involve satellites where η has linking number 0 with R, these
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invariants will not be useful. Furthermore, all Casson-Gordon invariants of our ex-

amples from Chapters 4 and 5 are zero because the satellites will be 2-solvable as

described in Subsection 2.2.3.

2.1.3 The Classical Blanchfield Form

The Blanchfield form is a sesquilinear form on the Alexander module. Recall that

AZ(K) is given by the first homology of the universal abelian cover of the knot

exterior (equivalently that of the zero surgery MK) with coefficients in Z[t, t−1]. The

Blanchfield linking form is given by the composition of the following maps.

B'ZK : H1(S
3 \K;Z[t, t−1])

π−→H1(S
3 \K, ∂(S3 \K);Z[t, t−1])

P.D.−−→H2(S3 \K;Z[t, t−1])

B−1

−−→H1(S3 \K;Q(t)/Z[t, t−1])

K−→Hom (H1(S3 \K;Z[t, t−1]);Q(t)/Z[t, t−1])

= H1(S
3 \K;Z[t, t−1])#

Here, P.D. denotes the Poincaré Duality isomorphism, B is the Bochstein isomor-

phism, and K is the Kronecker evaluation map. The Blanchfield form, B'ZK(x) :

AZ(K) → Q(t)/Z[t, t−1], is nonsingular, and we denote [B'ZK(x)](y) by B'ZK(x, y).

B'ZK : AZ(K)×AZ(K) → Q(t)/Z[t, t−1]

One may calculate the Blanchfield form using a formula of Kearton [Kea78]. Let V

be a Seifert matrix for K and r, s be elements of AZ(K). Then,

B'ZK(r, s) = (1− t)sᵀ(V − tV ᵀ)−1r,
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and the image of B' lies in the subring

Z[t, t−1]

∆K(t)Z[t, t−1]
⊂ Q(t) mod Z[t, t−1].

That B'ZK is sesquilinear means that it satisfies the following properties. For

αi, βj ∈ AZ(K),

B'ZK(α1 + α2, β) = B'ZK(α1, β) + B'ZK(α2, β), and

B'ZK(α, β1 + β2) = B'ZK(α, β1) + B'ZK(α, β2).

For α, β ∈ AZ(K) and x(t), y(t) ∈ Z[t, t−1],

B'ZK(x(t)α, β) = x(t)B'ZK(α, β), and

B'ZK(α, y(t)β) = y(t)B'ZK(α, β).

Here y(t) denotes the image of y(t) under the group ring involution

∑

i

niti =
∑

i

nit
−i.

For any knot K with nontrivial Alexander polynomial, let a be the leading coeffi-

cient of ∆K(t) and set Q = Z[1/a]. The Alexander module of K with Q-coefficients

is defined by

AQ(K) ≡ H1(MK ;Q[t, t−1]) ∼= AZ(K)⊗Z Q.

As a Q-module, AQ(K) is finitely generated and free, that is AQ(K) ∼= Qd where d

is the degree of ∆K(t). Thus, any element γ ∈ AQ(K) may be described as a vector

(γ1, . . . , γd) ∈ Qd.

Although classically the Blanchfield form is a sesquilinear form on the integral

Alexander module of K, this form extends to the Alexander module with coefficients

in Q in a natural way.
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Theorem 2.6 ([COT03, Theorem 2.13]). If Q is any ring such that Z ⊆ Q ⊆ Q,

then there is a nonsingular symmetric linking form

B'QK : AQ(K)×AQ(K) → Q(t) mod Q[t, t−1].

We later employ the Blanchfield form with Q-coefficients above for arbitrary sub-

rings of Q and sometimes alternate between coefficient systems. As we will be pri-

marily concerned with examples of x, y ∈ AQ(K) such that B'QK(x, x) 3= B'QK(y, y),

this distinction is actually unnecessary for our purposes. Suppose K has a nontriv-

ial Alexander polynomial ∆K(t) and x and y are unknotted curves in S3 \ K with

'k(x,R) = 'k(y,R) = 0. Then x and y lift to S̃3 \K and let x and y also denote the

corresponding elements of AZ(K). Then x ⊗ 1, y ⊗ 1 are the respective images of x

and y under the map

AZ(K) → AQ(K) ∼= AZ(K)⊗Z Q. (2.3)

given by z 1→ z⊗1. SinceAZ(K) has no Z-torsion, this map is injective. The following

proposition, though easy to show, was not found in the literature. We prove it here

for clarity.

Proposition 2.7. For any ring Q such that Z ⊆ Q ⊆ Q,

B'ZK(x, x) = B'ZK(y, y) ⇐⇒ B'QK(x⊗ 1, x⊗ 1) = B'QK(y ⊗ 1, y ⊗ 1).

Proof. Notice that the field of fractions of both Z[t, t−1] and Q[t, t−1] is Q(t) and the
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ring monomorphism Z ↪→ Q induces the following Z[t, t−1]-module homomorphisms.

h : Q(t) ↪→ Q(t)

h : Q(t)/Z[t, t−1] → Q(t)/Q[t, t−1]

h∗ : AZ(K) → AQ(K) ∼= AZ(K)⊗Z Q

The first map is the identity and the third is equivalent to the map of (2.3). Given

any element z ∈ AZ(K), we have

B'QK(z ⊗ 1, z ⊗ 1) = h(B'ZK(z, z))

[Lei06, Theorem 4.7].

From here, the =⇒ direction is obvious. We prove the ⇐= direction by contra-

diction. Suppose

B'Z(x, x)− B'Z(y, y) = p(t)

δK(t)
∈ Q(t) mod Z[t, t−1]

where (p(t), δK(t)) = 1 and δK(t) divides ∆K(t). If

B'Q(x⊗ 1, x⊗ 1)− B'Q(y ⊗ 1, y ⊗ 1) = 0,

this implies

h

(
p(t)

δK(t)

)
= 0.

The map h is given by modding out by the subring Q[t, t−1]/Z[t, t−1] ⊂ Q(t)/Z[t, t−1].

This means p(t)
δK(t) reduces to a polynomial F (t) ∈ Q[t, t−1]. After multiplying through

by some constant q ∈ Z that is a unit in Q, we obtain the following equation in

Z[t, t−1]:

q · p(t) = f(t)δK(t),
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where q · F (t) = f(t) ∈ Z[t, t−1]. Since δK(1) = ±1 and by regarding q as a constant

polynomial in Z[t, t−1], q and δK(t) are coprime. Hence q divides f(t), and

p(t)

δK(t)
=

f(t)

q
∈ Z[t, t−1].

This implies B'Z(x, x)− B'Z(y, y) ∈ Z[t, t−1].

As an important implication of Proposition 2.7, we are free to suppress the distinc-

tion between the integral and rational Blanchfield forms in comparing the Blanchfield

linking form of two elements with themselves. We will frequently pass between the

two and, by an abuse of notation, allow B'K(x, x) to identify both B'ZK(x, x) and

B'QK(x⊗ 1, x⊗ 1) where understood.

2.2 Higher-Order Invariants

Although the classical invariants provide the motivation for our study, they will not

be sufficient to prove that two satellites R(η1, J) and R(η2, J) represent distinct

concordance classes. If η1 and η2 have distinct orders as elements of the Alexander

module AZ(R), the situation is easier and treated in Chapter 3. Our main results,

however, apply even while η1 and η2 generate the same submodule of AZ(R) (Chapter

4) and sometimes while η1 and η2 are equivalent as elements of AZ(R) (Chapter 5).

Obstructions are ultimately found using a version of the Blanchfield form generalized

to understand the structure of higher-order Alexander modules.
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2.2.1 Commutator Series and Localizations of Rings

Before delving into the higher-order invariants and methods necessary to our proofs,

it will first be beneficial to establish some basic results and definitions of group and

ring theory which have important applications to our work.

Definition 2.8 ([CHL10, Definition 2.1]). A commutator series is a function ∗ which

assigns to each group G a sequence of normal subgroups

· · ·#G(n+1)
∗ #G(n)

∗ # · · ·#G(0)
∗ = G,

such that G(n)
∗ /G(n+1)

∗ is a torsion-free abelian group for each n. The commutator

series is weakly functorial if for any homomorphism f : A → B inducing an isomor-

phism on H1(−;Q), f(A(n)
∗ ) ⊂ B(n)

∗ for each n ≥ 0. More generally, if G(n)
∗ is only

defined for 0 ≤ n ≤ N , then ∗ is called a partial commutator series.

One example of a commutator series is the rational derived series, defined recur-

sively by

G(n+1)
r =

{
x ∈ G(n)

r |xk ∈
[
G(n)

r , G(n)
r

]
for some k ∈ Z

}
. (2.4)

Note that for any commutator series ∗, G(n)
r ⊂ G(n)

∗ for all n. Similarly, the canonical

epimorphism G(n)
∗ → G(n)

∗ /G(n+1)
∗ must factor through

G(n)
∗

φn−→ G(n)
∗ /[G(n)

∗ , G(n)
∗ ]

Z− torsion
σn−→ G(n)

∗

G(n+1)
∗

where the first map quotients out by

{
x ∈ G(n)

∗ |xk ∈
[
G(n)

∗ , G(n)
∗

]
for some k ∈ Z

}
.

Hence, one may recursively define a commutator series by the kernels of σn. An

important property of these commutator series is the following definition.
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Definition 2.9. A group Γ is said to be poly-(torsion-free abelian) if it admits a

subnormal series

{e} = Γn # Γn−1 # · · ·# Γ0 = Γ

such that each quotient group Gi/Gi+1 is torsion-free abelian.

Note that by Definition 2.8, for any G and and any commutator series ∗, Γk =

G/Gk
∗ is poly-(torsion-free abelian).

We are able to distinguish higher-order (localized) Alexander modules and Blanch-

field forms (Subsection 2.2.2) by carefully choosing the kernels of these σn. This will

establish a weakly functorial commutator series which will refine the n-solvable fil-

tration of the knot concordance group (Subsection 2.2.3).

Let S be a multiplicative subset of a domain R. Then S is called a right divisor

set if it satisfies the right Ore condition. That is, given r ∈ R and s ∈ S, there exists

r′ ∈ R, s′ ∈ S such that sr′ = rs′, i.e. sR ∩ rS 3= 0. When S is a right divisor set,

one may define the localization of R at S as RS = RS−1. RS is uniquely determined

by the homomorphism φ : R → RS which satisfies

1. φ(s) is invertible in RS for every s ∈ S, and

2. every element of RS has the form rs−1 for some r ∈ R, s ∈ S

[Coh00, Proposition 5.3]. More generally, if S = R× is a right divisor set, R is called

a right Ore domain and has a classical right ring of fractions.

One may use the localization of rings in order to recursively define a commutator

series. Suppose a partial commutator series G(k)
∗ has been defined for all k ≤ n. Then
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G/G(n)
∗ is poly-(torsion-free abelian) and Q

[
G/G(n)

∗

]
is an Ore domain [COT03].

Suppose Sn is a right divisor set of Q
[
G/G(n)

∗

]
. Note that

G(n)
∗[

G(n)
∗ , G(n)

∗

]

is a right Z[G/G(n)
∗ ]-module with the action induced by conjugation. Define

G(n+1)
∗ = ker




G(n)
∗ → G(n)

∗[
G(n)

∗ , G(n)
∗

] ⊗
Z[G/G

(n)
∗ ]

Q
[
G/G(n)

∗
]
S−1
n




 . (2.5)

It follows that G(n)
∗ /G(n+1)

∗ is torsion-free abelian, and G(n+1)
∗ extends the partial

commutator series ∗. Finding an appropriate right divisor set in Q[G/G(n)
∗ ] becomes

an important objective. We will make frequent use of the following proposition.

Proposition 2.10 ([CHL10, Proposition 4.1]). Suppose A#G where QA is a domain

and S is a right divisor set of QA which is G-invariant. Then S is a right divisor set

of QG.

This weak functoriality of the commutator series is determined by the choice of

right divisor sets Si. That is, suppose f : A → B is a group homomorphism inducing

an isomorphism on rational homology and f(Si(A)) ⊆ Si(B) for 0 ≤ i ≤ n. Then

f(A(n+1)
∗ ) ⊆ B(n+1)

∗ [CHL10, Proposition 3.2].

2.2.2 Higher-Order Analogues of the Alexander Module and

Blanchfield Form

The classical knot invariants, the Alexander module and Blanchfield form, provide

many details on the structure of the knot concordance group. We remark that the
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classical Alexander module as defined in 2.1.1 may be described via the fundamental

group of the knot exterior as

π1(S3 \K)(1)

π1(S3 \K)(2)
as a Z

[
π1(S3 \K)

π1(S3 \K)(1)

]
module.

Much information is lost, however, while restricting to these abelian invariants, and

one may recover a great amount of information by accounting for deeper noncommu-

tative structure in π1(S3 \K) beyond the second term of its derived series.

Suppose π1(X)
φ−→ Γ where Γ is poly-(torsion-free abelian). Associated to the

kernel of φ is a regular cover ofX, denotedXΓ, and Γ is the group of deck translations.

The homology of XΓ has the structure of a right ZΓ-module. When φ is surjective,

XΓ is connected and the module structure is given by

h · g 1→ g−1hg

for g ∈ Γ and h ∈ π1(XΓ) = kerφ. Thus, H1(XΓ;Z) is given by ker(φ)/ ker(φ)(1) and

has a Z[Γ]-module structure. We define

H1(X;ZΓ) ≡ H1(XΓ;Z).

Frequently, Γ is taken to be π1(X)/π1(X)(n)∗ for n ≥ 0 and some commutator series ∗

as in Definition 2.8. Note that when n = 1 and ∗ is the derived series, this is simply

the classical Alexander module.

Definition 2.11 ([Coc04, Definition 2.6]). The nth integral higher-order Alexander

module, AZ
n(K), n ≥ 0, of a knot K is the first integral homology of the cover of

S3 \K corresponding to the kernel of

φn : π1(S
3 \K) → Γn =

π1(S3 \K)

π1(S3 \K)(n+1)
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considered as a right ZΓn-module.

AZ
n(K) ∼= H1

((
S3 \K

)
Γn

;Z
)

Higher order Alexander modules provide great clarity in understanding knot con-

cordance. In fact, AZ
n(K) is a torsion ZΓn-module for every n ≥ 0 and is nontrivial

whenever ∆K(t) 3= 1 [Coc04, Theorem 3.1, Corollary 4.8]. These modules also behave

nicely under satellite operations. This behavior allows us to find knots K and K ′ such

that AZ
k (K) ∼= AZ

k (K
′) for each 0 ≤ k < n but which are distinguished by AZ

n.

Proposition 2.12. Suppose R is a knot and η is an unknotted circle in π1(S3\R)(n).

Then the kth higher-order Alexander module of R(η, J) is given by

AZ
k (R(η, J)) ∼=






AZ
k (R) 0 ≤ k < n

AZ
k (R)⊕

(
AZ

0 (J)⊗Z[t,t−1] ZΓn

)
k = n

where Γn = π1(MR)/π1(MR)(n+1) and ZΓn is considered as a left Z[t, t−1]-module via

the action t 1→ η.

These modules are not typically finitely generated and the noncommutativity of

ZΓn provides an added layer of difficulty. In order to distinguish these invariants, it

becomes necessary to define a localized version of the higher order Alexander modules.

Let KΓn be the field of fractions of QΓn, and suppose Pn is a localization of QΓn given

by QΓnS−1 for some right divisor set S ⊂ QΓn. So QΓn ⊂ Pn ⊂ KΓn.

Definition 2.13 ([Coc04, Definitions 3.5, 4.1]). An nth-order “localized” Alexander

module of a knot K is the homology of S3 \K with coefficients induced by the map

π1(S3 \K) → ZΓn → Pn. That is,

APn(K) = H1(E(K);Pn) = H1

(
C∗

(
(S3 \K)Γn ;Z

)
⊗ZΓn Pn

)
,
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and APn(K) may be regarded as a finitely-generated torsion module over Pn.

Note that these are not the localized Alexander modules of [Coc04, COT03] since

here Pn is taken to be an arbitrary localization of QΓn and is not necessarily a

principal ideal domain. However Pn is a flat left ZΓn-module [Ste75, Proposition 3.4],

and hence, H1(S3 \K;Pn) ∼= AZ ⊗ZΓn Pn [Coc04, Proposition 4.4].

Although a knot K is determined by its exterior [GL89], it is often convenient

to work with closed manifolds . Hence, we will often study the 3-manifold obtained

by zero-framed surgery on K. This distinction could have an adverse affect on the

homology groups presented. Note that the kernel of the map

π1(S
3 \K) → π1(MK)

is normally generated by the longitude of K, which lies in the second term of the

derived series of π1(S3 \K). Hence, as long as π1(MK) → Γ factors through

π1(MK) → π1(MK)/π1(MK)
(1) → Γ,

we have the following proposition, which is a slight generalization of [Lei06, Proposi-

tion 6.1] and [Coc04, Lemma 8.3].

Proposition 2.14. Suppose π1(S3 \ K) → Γ is a map where Γ is torsion-free and

which factors nontrivially through π1(S3 \K)/π1(S3 \K)(1). Then

H1(MK ;ZΓ) ∼= H1(S
3 \K;ZΓ).

Proof. Since the kernel of π1(S3 \K) → Γ contains π1(S3 \K)(1), its image is cyclic

generated by µ(K), and the image of π1(∂S3 \K) in Γ is the same as the image of
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π1(S3 \ K). Thus, i : ∂S3 \ K → S3 \ K induces an isomorphism on H0(−;ZΓ) by

[Coc04, Proposition 3.7]. Consider the Mayer Vietoris sequence

H1(MK ;ZΓ)
∂∗−→ H0(∂S

3 \K;ZΓ) → H0(S
3 \K;ZΓ)⊕H0(D

2 × S2;ZΓ).

Here, ∂∗ must be the trivial map. Since π1(S3 \ K) → Γ is nontrivial, the image

of µ(K) is nonzero and µ(K) is “unwound” in the induced Γ cover of ∂S3 \ K and

H1(∂S3\K;ZΓ) is generated by λ(K). Moreover, λ(K) bounds a surface in S3\K and

this surface lifts to the Γ cover since each curve on the surface lies in π1(S3 \K)(1).

Hence, i : ∂S3 \ K → S3 \ K induces the zero map on H1(−;ZΓ). Consider the

following portion of the Mayer Vietoris sequence

H1(∂S
3 \K;ZΓ) (i∗,j∗)−−−→ H1(S

3 \K;ZΓ)⊕H1(D
2 × S1;ZΓ) i′∗+j′∗−−−→ H1(MK ;ZΓ).

Note that H1(D2×S1;Z) is generated by µ(K) and we’ve seen that µ(K) is unwound

in the Γ cover, so H1(D2 × S1;ZΓ) = 0 and H1(S3 \ K;ZΓ) j′∗−→ H1(MK ;ZΓ) is an

isomorphism.

The classical Blanchfield linking form generalizes to symmetric linking forms on

the localized higher-order Alexander modules. Recall that a linking form λ on A is

symmetric if A is a torsion P -module and

λ : A → HomP (A;KP/P ),

is a P -module map with λ(x, y) = λ(y, x) and where M denotes the right P -module

obtained from the left P -module M given by involution on P . The linking form is

said to be nonsingular when λ is an isomorphism.
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Theorem 2.15 ([COT03]). Suppose M is a compact, oriented, connected 3-manifold

with β1(M) = 1, φ : π1(M) → Γ is a nontrivial coefficient system, and Γ is poly-

(torsion-free abelian). Suppose P is a ring with involution extending that of ZΓ such

that ZΓ ⊆ P ⊆ KΓ. Then there exists a symmetric linking form

B'PM : H1(M ;P ) → Hom(H1(M ;P );KΓ/P ) ≡ H1(M ;P )#.

This form is nonsingular if P is a principal ideal domain.

When M is the knot exterior or zero surgery, this linking form is called a higher-

order Blanchfield linking form. As in the classical case of Subsection 2.1.1, it is defined

via the composition of the following maps.

H1(M ;Pn)
π−→ H1(M, ∂M ;Pn)

P.D.−−→ H2(M ;Pn)

B−1

−−→ H1(M ;Kn/Pn)

κ−→ HomPn(H1(M ;Pn);Kn/Pn)

If Pn = Z[π1(M)/π1(M)(n)], we denote B'Pn
M simply by B'nM .

Like higher-order Alexander modules, the higher-order Blanchfield forms also be-

have predictably under satellite operations. Suppose η ∈ π1(S3 \R)(n) for some knot

R. Then B'kR ∼= B'kR(η,J) for all 0 ≤ k < n. When k = n, we have the following

theorem.

Theorem 2.16 ([Lei06, Theorems 4.6, 4.7]). Suppose x1, x2 ∈ AZ
n(R) and y1, y2 ∈

AZ
0 (J), then

B'nR(η,J)(i(x1) + j(y1), i(x2) + j(y2)) = B'nR(x1, x2) + j
(
B'0J(y1, y2)

)
.
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Here i : AZ
n(R) ↪→ AZ

n(R(η, J)), and j : AZ
0 (E(J)) → AZ

n(R(η, J)). Inclusion

induces the map

j :
Q(t)

Z[t, t−1]
→ KΓn

ZΓn

given by t 1→ η.

2.2.3 The n-Solvable Filtration of Cochran-Orr-Teichner

Our results build upon and help clarify the structure of the n-solvable filtration of

the knot concordance group.

Definition 2.17 ([COT03, Definition 1.2]). A knot K is n-solvable if there exists a

4-manifold V with boundary ∂V = MK such that the following hold.

1. Inclusion induces an isomorphism H1(MK ;Z)
∼=−→ H1(V ;Z).

2. There exists a basis for H2(V ;Z), {Li, Dj|i, j = 1, . . . , r}, consisting of compact,

connected, embedded surfaces with trivial normal bundles which are pairwise

disjoint, except that for each i, Li intersects Di transversely once with positive

sign.

3. Inclusion induces π1(Li) → π1(V )(n) and π1(Di) → π1(V )(n).

The knot is n.5-solvable if, in addition,

4. π1(Li) → π1(V )(n+1).

V is called the n-solution (respectively the n.5-solution) for K. The subset of C

consisting of all n-solvable knots is denoted Fn.
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If instead of the usual derived series, we employ a weakly functorial commuta-

tor series ∗ on π1(V ) and property 3 (and 4) holds for π1(V )(n)∗ , we say that K

is (n, ∗)-solvable (respectively (n.5, ∗)-solvable) [CHL10, Definition 2.1]. The set of

(n, ∗)-solvable knots is denoted by F∗
n. These definitions induce a filtration on the

concordance group indexed by half integers, where Fn ⊂ F∗
n for each nonnegative

n ∈ 1
2Z [CHL10, Proposition 2.5]. That is,

0 ⊂
⋂

F∗
n ⊂ · · · ⊂ F∗

n.5 ⊂ F∗
n ⊂ · · · ⊂ F∗

1 ⊂ F∗
0.5 ⊂ F∗

0 ⊂ C.

Many recent results in concordance have relied on this filtration[COT03, CHL10,

CHL11, CHL09], and the n-solvable filtration contains many previous concordance

results as well. Knots which are 0-solvable are precisely those which have Arf-invariant

zero, 0.5-solvable knots are algebraically slice, and any topologically slice knot is in Fn

for every n ≥ 0. Furthermore, knots in F1.5 have vanishing Casson-Gordon invariants

[COT03].

The following theorem shows how satellite operations affect the n-solvable filtra-

tion and will be integral to later results.

Theorem 2.18 ([CHL10, Proposition 2.7]). Suppose J ∈ Fn, R is a ribbon knot, and

η ⊂ S3\R is an unknotted curve. If η ∈ π1(MR)
(k)
∗ , then R(η, J) is (n+k, ∗)-solvable.

2.2.4 Cheeger-Gromov Constants and the von Neumann ρ-

Invariant

The definition of an n-solvable knot relies heavily on properties of the putative n-

solution V . Therefore, we must look to invariants associated to the 4-manifold V in
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order to obstruct n.5-solvability and hence sliceness.

Given a compact orientable 4-manifold X with boundary ∂X = MK , let Φ :

π1(X) → Λ be a coefficient system such that Λ is a poly-(torsion-free abelian)

group. If ∂(X,Φ) = (MK ,φ), Cheeger and Gromov studied the ρ-invariant, denoted

ρ(MK ,φ), associated to Φ and showed that it is equal to the “von Neumann signature

defect” [CG85],

ρ(MK ,φ) = σ(2)
Λ (X,Φ)− σ(X).

In this equation, σ(2)
Λ (X,Φ) is the L(2)-signature of the equivariant intersection form

defined on H2(X;ZΛ) twisted by Φ, and σ(X) is the ordinary signature (See [COT03,

Section 5]).

Proposition 2.19 ([CHL11, Proposition 4.1, Theorem 4.2]). 1. If φ factors

through φ′ : π1(MK) → Λ′ where Λ′ is a subgroup of Λ, then ρ(MK ,φ′) =

ρ(MK ,φ).

2. If Φ is trivial on the restriction to MK ⊂ ∂X, then ρ(MK ,φ) = 0.

3. If φ : π1(MK) → Z is the abelianization homomorphism, then ρ(MK ,φ) is

denoted by ρ0(K) and is equal to the integral of the Levine-Tristram signature

function of K.

4. The von Neumann signature defect satisfies Novikov additivity, i.e. if X1 and

X2 intersect along a common boundary component and Φi is the restriction of

Φ : X1 ∪X2 → Λ to Xi, then σ(2)
Λ (X1 ∪X2,Φ) = σ(2)

Λ (X1,Φ1) + σ(2)
Λ (X2,Φ2).
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5. There is a positive real number CK called the Cheeger-Gromov constant of MK

such that, for any φ : π1(MK) → Λ, |ρ(MK ,φ)| < CK.

6. Let ∗ be an arbitrary commutator series and suppose K ∈ F∗
n.5 via X with

G = π1(X). If Φ : π1(X) → G/G(n+1)
∗ = Λ, then

σ(2)
Λ (X,Φ)− σ(X) = 0 = ρ(MK ,φ).

2.3 Satellite Concordance

It seems clear that satellites obtained by distinct axes should produce distinct concor-

dance classes, but this is not always true. First, the companion knot J must satisfy

some restrictions. In particular, if J is slice, R(η, J) will always be concordant to R.

The following examples illustrate the complexity of satellite concordance.

α β

Figure 2.1: The ribbon knot of Example 2.20, R1 = 946 with curves α and β

Example 2.20. Take R1 = 946 and let α and β be the curves shown in Figure

2.1. Let J be any knot, and set K1 ≡ R1(α, J) and K2 ≡ R1(β, J). Notice that α

and β have different orders and generate different submodules as elements of AZ(R1).

However, both α and β encircle ribbon bands of R. If we cut along the band encircled
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by α in K1 we obtain the two-component trivial link shown on the right-hand side of

Figure 2.2. This proves that K1 is ribbon and K2 is shown to be ribbon similarly.

J J

Figure 2.2: Cutting a ribbon band yields a trivial link in S3.

In Example 2.20, α and β generate different submodules and have different orders

as elements of AZ(R1), but both submodules are isotropic with respect to the classical

Blanchfield linking form, that is B'R1(α,α) = B'R1(β, β) = 0. This motivates our

inquiry into how restrictions on the Blanchfield form of the axes with themselves could

obstruct concordance of satellites. These restrictions prove lucrative even if the axes

generate the same submodule and have the same order in the Alexander module. The

following example illustrates that the question of which ηi lead to distinct concordance

classes is complicated even when the ηi do not lie in isotropic submodules.

21

η1

21

η2

Figure 2.3: The ribbon knot of Example 2.21, R2 = R1#R2 and curves η1, η2.

Example 2.21. Let R2 = R1#R2 be the ribbon knot of Figure 2.3 formed by taking

the connected sum of ribbon knots R1 and R2. The numbers 1 and 2 inside the boxes

indicate 1 and 2 negative full twists respectively. Let η1 and η2 be the curves in



33

S3 \ R2 shown on the left- and right-hand sides of Figure 2.3. Again, take J to be

any knot, and set K1 ≡ R2(η1, J) and K2 ≡ R2(η2, J). The Alexander module of R2

is given by

AZ(R2) = AZ(R1)⊕AZ(R2) =
Q[t, t−1]

(1− 2t)(2− t)
⊕ Q[t, t−1]

(2− 3t)(3− 2t)
.

One easily shows that η1 and η2 generate different submodules of AZ(R2), and neither

is isotropic with respect to the Blanchfield form. The orders of η1 and η2 are (2 −

3t)(3− 2t) and (2− 3t)(3− 2t)(2− t) respectively, but a quick calcluation gives that

B'R2(η1, η1) = B'R2(η2, η2) =
5(−1 + t)2

6− 13t+ 6t2
.

In fact, K1 and K2 are concordant because the “extra band” encircled by η2 is a

ribbon band of R1. By cutting this band in a similar process to that depicted in

Figure 2.2, we see that K1 and K2 are concordant.



Chapter 3

Satellites Distinguished by Orders

in the Alexander Module

Many previous findings on the structure of the knot concordance group, and in par-

ticular the n-solvable filtration, have been found using satellite operations, R(η, J),

though hese results typically rely only on the linking number of η with R [CHL10,

CHL11, CHL09]. In this section, by building upon previous results, we show that

when η1 and η2 have different orders as elements of AZ
0 (R), distinct concordance

classes are easily obtained (as compared to our results in Chapters 4 and 5). Al-

though closely related to those of [CHL10], these do not appear in the literature and

are detailed here.

We supposeR is a ribbon knot with ∆R(t) 3= 1. Let η1 and η2 be unknotted curves

representing elements of AZ(R) with orders o1(t) and o2(t), respectively. Suppose p(t)

is a prime polynomial such that p(t) divides o1(t) but (o2(t), p(t)) = (o2(t), p(t−1)) = 1.

34
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Then define P to be the multiplicative subset of Q[t, t−1] given by

P = {q(t)|(qi, p) = (qi, p) = 1},

and define Ψ to be the inclusion induced homomorphism Ψ : Q[t, t−1] → Q[t, t−1]P−1.

Then Ψ induces the map

Ψ :
Q(t)

Q[t, t−1]
→ Q(t)

Q[t, t−1]P−1
.

We require Ψ(B'R(η1, η1)) 3= 0, which yields the following theorem.

Theorem 3.1. Let R be a ribbon knot with ∆R(t) 3= 1 and J be a 0-solvable knot

such that |ρ0(J)| > 2CR. Let η1 and η2 be unknotted curves with 'k(ηi,R) = 0

and such that the orders of η1,and η2 in AZ(R) are o1(t) and o2(t) respectively. If

there exists a prime p(t) dividing o1(t) such that (p(t), o2(t)) = (p(t), o2(t)) = 1 and

Ψ(B'R(η1, η1)) 3= 0, then given any knot L which is 0-solvable, K1 = R(η1, J) and

K2 = R(η2, L) represent distinct classes in C.

Proof. Construct K1 and K2 as indicated in the statement of the theorem. Certainly,

both Ki are 1-solvable. Note that from the satellite operation arises a natural cobor-

dism between zero surgeries on the knots involved. Given that K1 ≡ R(η1, J), denote

by E1 the cobordism obtained by first taking the disjoint union of MR × [0, 1] and

MJ × [0, 1]. Then identify a neighborhood of η1×{1}, denoted by ν(η1), in MR×{1}

with ν(J), a neighborhood of J × {1} in MJ × {1} given by (MJ \ (S3 \ J)) × {1}

as shown in Figure 3.1. This identification is done such that the longitude of J is

identified with the meridian of ν(η1) and the meridian of J is identified with the

reverse of the longitude of ν(η1). That is,
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ν(η1)

M J
× [0,

1]
M
R ×

[0, 1]

MK1

Figure 3.1: The cobordism E1 given by the satellite operation K1 = R(η1, J)

F1 ≡
(MR × [0, 1]) ∪ (MJ × [0, 1])

ν(η1) ∼ ν(J)
.

The boundary of E1 is then given by ∂E1 = MR *MJ *MK1 , where by X, we mean

the manifold X with opposite orientation. Similarly, we let E2 denote the satellite

cobordism given by K2 = R(η2, L). Since connected sum K1#−K2 may also be

viewed as a satellite of K1 by −K2 with axis given a meridian, form a cobordism F

between zero surgeries on K1, −K2, and K1#−K2 in a similar manner. We show

by contradiction that K1#−K2 is not slice. If K1#−K2 is slice, there exists a slice

disk complement V with boundary ∂V = MK1#−K2 . Let W be the manifold obtained

by adjoining V to F along MK1#−K2 and similarly Z is obtained by adjoining W

to E1 and E2 along MK1 and MK2 respectively shown in Figure 3.2. Then ∂Z =

MR *MJ *MR *ML.

Take P to be a partial commutator series on the class of groups G with β1 = 1,

given by

G(0)
P = G

G(1)
P = G(1)

r

G(2)
P = ker

{
G(1)

P → G
(1)
P

[G
(1)
P ,G

(1)
P ]

⊗Z[t,t−1] Q[t, t−1]P−1

}
.
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V

MK1#−K2

F

MK2MK1

E1

MJMR

E2

MLMR

Figure 3.2: The 4-manifold Z constructed from a tower of cobordisms. The shaded

region is W .

Let φ be the projection

φ : π1(Z) →
π1(Z)

π1(Z)(2)
→ π1(Z)

π1(Z)
(2)
P

.

We consider the von Neumann signature defect of Z given by this coefficient system.

By Proposition 2.19, we have

0 = σ(2)(Z,φ)− σ(Z)

= ρ(∂Z,φ|π1(∂Z))

= ρ(MR,φ|π1(MR)) + ρ(MJ ,φ|π1(MJ )) + ρ(MR,φ|π1(MR)) + ρ(ML,φ|π1(ML)
).

(3.1)

We claim the restriction of φ to π1(MJ) factors nontrivially through Z, and the

restriction to π1(ML) is trivial, yielding

ρ(MJ ,φ|π1(MJ )) = ρ0(J), and ρ(ML,φ|π1(ML)
) = 0.

We first show that the restriction of φ to π1(ML) is trivial. Since π1(ML) is
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normally generated by its meridian which is isotopic in Z to η2, it suffices to show

that η2 is trivial in π1(Z)(1)/π1(Z)
(2)
P . For any space X, we denote by AP(X) the

localized Alexander module of X, given by

AP(X) ≡ AZ(X)⊗Q[t, t−1]P−1 ∼=
π1(X)(1)

π1(X)(2)
⊗Z[t,t−1] Q[t, t−1]P−1.

Consider the following diagram where φ∗, f∗, g∗,φ′
∗, f

′
∗ and g′∗ are all induced by in-

clusion and the vertical maps by projection.

AZ(K1#−K2) AZ(V ) AZ(W ) AZ(Z)
π1(Z)(1)

π1(Z)
(2)
P

AP(K1#−K2) AP(V ) AP(W ) AP(Z)
##

ψ

$$
φ∗

##

$$
f∗

##

$$
g∗

##

$$

""

i

$$
φ′
∗

$$
f ′
∗

$$
g′∗

By definition, π1(Z)
(2)
P is the kernel of π1(Z)(1) → AP(Z) and i is injective. Under the

map ψ, η2 1→ η2⊗1. Since o2(t) is relatively prime to both p(t) and p(t−1), o2(t) ∈ P .

Hence

η2 ⊗ 1 = η2 · o2(t)⊗
1

o2(t)
= 0,

and η2 is trivial in π1(Z)(1)/π1(Z)
(2)
P as desired.

Next consider π1(MJ) which is normally generated by its meridian, µ(J), which is

isotopic in Z to η1. The kernel of ψ is the P -torsion submodule of AZ(K1#−K2) ∼=

AZ(K1) ⊕AZ(K2). However, η1 is o1(t)-torsion, and o1(t) /∈ P by definition. There-

fore, ψ(η1) is nontrivial. Since we assumed V to be a slice disk complement for

K1#−K2, the kernel of φ′
∗ is an isotropic submodule of AP(K1#−K2) with respect

to the localized Blanchfield form B'PR which is given by

B'PR(ψ(η1),ψ(η1)) = Ψ(B'R(η1, η1))
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[Lei06, Theorem 4.7]. Since Ψ(B'R(η1, η1)) 3= 0 by hypothesis, η1 must survive in

AP(V ).

The kernels of both π1(V ) → π1(W ) and π1(W ) → π1(Z) are normally generated

by longitudes of the companion knots. These lie in the second term of the derived

series of π1(V ) and π1(W ) and therefore in π1(V )(2)P and π1(W )(2)P . Hence, inclusion

induces the isomorphisms

AP(V ) ∼= AP(W ) ∼= AP(Z),

and g′∗ ◦ f ′
∗ is injective. This implies µ(J) represents a nontrivial element of

π1(Z)
(1)/π1(Z)

(2)
P ,

and the map

φ : π1(MJ) →
π1(Z)

π1(Z)
(2)
P

must factor through π1(MJ)/π1(MJ)(1) ∼= Z. Therefore, ρ(MJ ,φ) = ρ0(J), and equa-

tion 3.1 reduces to

ρ0(J) = −ρ(MR,φ|π1(MR))− ρ(MR,φ|π1(MR)) ≤ 2CR.

By hypothesis |ρ0(J)| > 2CR yielding the desired contradiction.



Chapter 4

Satellites Distinguished by

Classical Blanchfield Form

In this chapter, we go further by distinguishing concordance of satellites R(η1, J) and

R(η2, J) when η1 and η2 have the same order in AZ(R). We see that a sufficient

condition to distinguish concordance classes is provided by the value of the classical

Blanchfield form of the ηi with themselves, B'R(ηi, ηi).

We suppose R is a ribbon knot with nontrivial Alexander polynomial and η1 and

η2 are unknotted curves in S3 \ R with 'k(ηi,R) = 0 and such that B'R(η1, η1) 3=

B'R(η2, η2) when viewed as elements of AZ(R). The companions J and L will be

chosen to be 1-solvable knots which may or may not be distinct. Then we define

K1 = R(η1, J), and K2 = R(η2, L). Under certain conditions for J , and L, we show

that K1 and K2 are not concordant. Since both J and L are 1-solvable, by Theorem

2.18, both Ki will lie in F2. We show that K1#−K2 is not slice by showing that

it is not (2.5,S)-solvable where S is a commutator series defined in Definition 4.6.

40
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k

β

Figure 4.1: The ribbon knot Rk and axis β

Property 6 of Proposition 2.19 is integral to providing obstructions to solvability. If

we assume V is a (2.5)-solution for K1#−K2, and Φ : π1(V ) → Λ is trivial on

π1(V )(3), then ρ(MK1#−K2 ,φ) is trivial.

Using properties of ρ-invariants, we make the choice of J explicit. First, J0 will

be an Arf-invariant zero knot. Take R to be a ribbon knot with nontrivial Alexan-

der polynomial, and let β be an unknotted curve in S3 \ R, which generates the

rational Alexander module of R. An example of such a ribbon knot is shown in

Figure 4.1, where the k in the box denotes k negative full twists, and ∆R(t) =

(kt− (k + 1)) ((k + 1)t− k)). We will require that J0 have |ρ0(J0)| > CR + 2CR

where CR and CR are the Cheeger-Gromov constants of R and R respectively (prop-

erties 3 and 5 of Proposition 2.19). We define J = R(β, J0). By Theorem 2.18,

J ∈ F1.

Choose L to be any 1-solvable knot with Alexander polynomial ∆L(t) satisfying

one of the two following conditions:

1. ∆R and ∆L are strongly coprime, i.e. ∆R(tn),∆L(tm) are relatively prime for

every n,m ∈ Z, or
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2. ∆R(tm) and ∆L(tn) have no common roots unless n = ±m.

Certainly (1) implies (2). If (1) holds, we prove that K1 = R(η1, J) and K2 =

R(η2, L) are distinct (and even linearly independent) in C by a generalization of

Cochran-Harvey-Leidy [CHL10]. If (2), a secondary restriction will be given by the

Blanchfield form of the curves η1 and η2 with themselves. In particular, we require

that B'R(η1, η1) 3= B'R(η2, η2).

Theorem 4.1. Let R and R be ribbon knots with nontrivial Alexander polynomials,

and let J0 be an Arf-invariant zero knot such that |ρ0(J0)| > CR + 2CR. Suppose

J = R(β, J0) where β generates the rational Alexander module of R. Then form

K1 = R(η1, J) where B'R(η1, η1) 3= 0 and K2 = R(η2, L) where L is some 1-solvable

knot. Suppose that one of the following conditions hold.

1. ∆L(t) and ∆R(t) are strongly coprime, or

2. ∆L(tm) and ∆R(tn) share a common root only when n = ±m and B'R(η1, η1) 3=

B'R(η2, η2).

Then K1 and K2 are distinct in C. In particular, R(η1,−) and R(η2,−) are distinct

maps on C.

Before discussing its proof, we introduce the following corollaries which illustrate

the impact of Theorem 4.1.

Corollary 4.2. Let R be a ribbon knot. Suppose J = R(β, J0) where J0 is an Arf-

invariant zero knot and R is the ribbon knot from Figure 4.1 with β as shown. Let

K1 = R(η1, J) and K2 = R(η2, J) where η1 and η2 are unknotted curves in the
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complement of R with 'k(η1,R) = 'k(η2,R) = 0. If |ρ0(J0)| > CR + 2CR and

B'R(η1, η1) 3= B'R(η2, η2), then K1 and K2 are not concordant.

Proof that Theorem 4.1 implies Corollary 4.2. We assume without loss of

generality B'R(η1, η1) 3= 0. Since ∆R(t) = ∆J(t) = (kt − (k + 1))((k + 1)t − k) has

roots { k
k+1 ,

k+1
k }, ∆R(tm) and ∆R(tn) share no common roots unless n = ±m. The

result follows from Theorem 4.1.

The above stresses the distinction between the axes of a satellite operation and

shows that given suitable choices of axes, the influence of the companion knot is

less necessary to obstruct concordance. We next generalize these results to produce

infinitely many distinct concordance classes.

Corollary 4.3. Suppose R is any ribbon knot with ∆R 3= 1. Then there exists a

countably infinite set of curves {ηi} in S3 \ R which are unknotted in S3 and have

linking number 0 with R, and also a knot J such that each Ki = R(ηi, J) represents

a distinct concordance class.

Proof. In order to employ Corollary 4.2, we must ensure the existence of an infinite

family of unknotted curves {ηi} which have give distinct values of B'R(ηi, ηi), that

is B'R(ηi, ηi) = B'R(ηj, ηj) only when i = j. Since R has nontrivial Alexander

polynomial and the Blanchfield form on AZ(R) is nonsingular, there must exist some

curve η ⊂ S3 \ R such that B'R(η, η) 3= 0. We use the following lemma.

Lemma 4.4. Suppose η ⊂ S3 \ R is an unknotted curve in S3 with lk(η,R) = 0

and B'R(η, η) 3= 0. For each i ∈ Z≥0, set ηi = iη ∈ AZ(R). Then B'R(ηi, ηi) =
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B'R(ηj, ηj) only when i = j, and each ηi is represented by an unknotted curve in

S3 \ R.

Proof. Suppose B'R(η, η) = p(t)
δR(t) /∈ Z[t, t−1] such that (p(t), δR(t)) = 1 and δR(t)

divides ∆R(t). Then we have

B'R(ηi, ηi) = B'R(iη, iη) = i2B'R(η, η) = i2
p(t)

δR(t)
.

If B'R(ηi, ηi) = B'R(ηj, ηj), this implies (i2−j2)B'R(η, η) = f(t) ∈ Z[t, t−1]. We have

the following equation

(i2 − j2)p(t) = f(t)δR(t),

where since p(t)
δR(t) /∈ Z[t, t−1], we can assume that i2 − j2 does not divide f(t) over

Z[t, t−1]. Since δR(1) = ±1, i2 − j2 ∈ {0,±1}. If i2 − j2 = ±1, this contradicts

B'R(η, η) 3= 0. As i, j ≥ 0, i2 − j2 is zero only when i = j. We must next show that

each ηi is unknotted in S3. But notice that the element iη ∈ AZ(R) is realized by

the (i, 1)-cable of η. This completes the proof.

By taking J to be the knot given in the statement of Corollary 4.2, we obtain a

family of pairwise distinct concordance classes {Ki = R(ηi, J)} for i ≥ 0.

The following corollary illustrates how uncommon it is for two unknotted curves,

η and γ in S3 \ R, to yield concordant knots. By viewing them as elements of

AQ(R) ∼= Qd where d = deg∆R(t), we get an approximate answer to this question by

seeing that a subset of axes {γ|γ is unknotted in S3, 'k(γ,R) = 0} which yield knots

concordant to K = R(η, J) must lie on a quadratic hypersurface in Qd.
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Proposition 4.5. Let R be a ribbon knot such that deg∆R = d 3= 0 and J = R(β, J0)

as above. Fix some unknotted curve η ⊂ S3 \ R such that 'k(η,R) = 0 and let

K = R(η, J). Then,

{γ|B'R(γ, γ) = B'R(η, η)}

is the subset of a quadric hypersurface in Qd, and thus

{γ|K ′ = R(γ, J) is not concordant to K}

is dense as a subset of Qd.

Proof. Following work of Trotter [Tro78, Tro73], let z = (1 − t)−1 and note that

Q(t) = Q(z). Furthermore, since z gives an automorphism of AZ(K), enlarging

coefficients from Z[t, t−1] to Z[t, t−1, z] has no effect on the module structure. Consider

the map

Q(t)

Z[t, t−1]
j−→ Q(t)

Z[t, t−1, z]

given by inclusion. The form given by B̂'(x, y) = j(B'R(x, y)) is a nonsingular

sesquilinear form and j maps the image of B'R(−,−) one-to-one onto the image of

B̂'(−,−) [Tro78].

Using a partial fraction decomposition, any element in Q(t) may be written

uniquely as the sum of a polynomial and a proper fraction. Thus, Q(t) splits over Q

as the direct sum of Q[t, t−1, z] and a subspace P consisting of 0 and proper fractions

with denominator coprime to t and 1− t. Then we have a Q-linear map χ : Q(t) → Q

defined by

χ(f) =






f ′(1) f ∈ P

0 f ∈ Q[t, t−1, z]

.
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Since χ is trivial on Q[t, t−1, z], it is well defined on Q(z)/Q[t, t−1, z] and thus on the

image of B̂'. Note that the value of B̂'(x, y) is uniquely determined by the value of

χ(λB̂'(x, y)) for all λ ∈ Z[t, t−1, z], and furthermore, χ satisfies

χ(f) = χ(f) χ((t− 1)f) = f(1)

for any f ∈ P [Tro73, Section 2]. Since B'R(x, y) = B'R(y, x) for any x, y ∈ AZ(K),

χ(B̂'(γ, γ)) = 0 for all γ. This is also seen by noting that a formula for B'R is given

by [Kea78]

B'R(x, y) = y(1− t) (tV − V ᵀ)−1 x.

Since B'R is nonsingular, there must exist some λ0 ∈ Z[t, t−1, z] and some γ0 ∈ AZ(K)

such that χ(λ0B'R(γ0, γ0)) is nonzero. Define χ̂ : AQ(K) ∼= Qd → Q by

χ̂(γ) ≡ χ(λ0B̂'(γ, γ)).

Suppose χ̂(η) = c ∈ Q. Fix a Q-basis {ei} for AQ(K) such that
∑

xiei = (x1, . . . , xd).

Then χ̂(x1, . . . , xd) = c is a rational equation in d variables and the left-hand side is

a homogeneous polynomial of degree 2. That is,

χ̂(x1, . . . , xd) =
∑

i,j

χ (λ0B'R(xi, xj))

=
∑

i,j

xi, xjχ (λ0B'R(ei, ej))

=
∑

i,j

ai,jxixj = c

where ai,j = χ (λ0B'R(ei, ej)). Since B'R is nonsingular, not all ai,j = 0. By Theorem

4.1, the set of axes γ ⊂ S3\R with 'k(γ,R) = 0 such thatK ′ = R(γ, J) is concordant
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to K = R(η, J) must satisfy B'R(γ, γ) = B'R(η, η). Therefore γ = (γ1, . . . , γd) must

be a solution to χ̂(x1, . . . , xd) = c.

Consider the polynomial F (x1, . . . , xd) = χ̂(x1, . . . , xd) − c = 0. If c 3= 0, this

polynomial is clearly nonconstant since F (20) = −c. Otherwise, given the choice

of λ0 and that B'R is nonsingular, there exists an element γ0 ∈ AZ(R) such that

χ̂(γ0) 3= 0. Hence F (γ0) 3= 0 and F is a nonconstant polynomial. The zero locus of

χ̂(x1, . . . , xd)− c is a quadric hypersurface in Qd whose compliment is dense.

In the proof Proposition 4.5, we distinguish axes γ with 'k(γ,R) = 0 by evaluat-

ing Trotter’s trace function χ on λ0B̂'R(γ, γ) for one particular value λ0 ∈ Q[t, t−1, z].

Since B̂'R(γ, γ) is uniquely determined by the value of χ(λB̂'(γ, γ)) for all λ ∈

Q[t, t−1, z], one could attempt to distinguish the curves γ and η by using multiple

values of λ when χ(λ0B̂'(γ, γ)) = χ(λ0B̂'(η, η)).

We now proceed to the proof of Theorem 4.1.

Proof of Theorem 4.1. We show the stronger fact that K1#−K2 is not 2.5-solvable

by contradiction. Note that K1#−K2 is 2-solvable by [CHL10, Proposition 2.7], and

we suppose it is 2.5-solvable via V . We construct a tower of cobordisms for MK1#−K2 .

Let F1 and F2 be the satellite cobordisms corresponding to K1 = R(η1, J) and K2 =

R(η2, J) respectively, and let E denote the cobordism given by the connected sum

K1#−K2. The satellite J = R(β, J0) will yield a cobordism denoted G. Define W ′

to be the union of V and E along their common boundary. Similarly, W is the union

W ′ ∪ F1 ∪ F2. Then, let Z be the manifold obtained by joining the cobordism G to

W along MJ . The boundary of Z is given by ∂Z = MR *MR *MJ0 *MR *ML. A
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V

MK1#−K2

E

MK2MK1

F1

MJMR

F2

MLMR

G

MR MJ0

Figure 4.2: The 4-manifold Z, constructed by a tower of cobordisms

complete picture of Z is shown in Figure 4.2. In overview, we have the following.

∂V = MK1#−K2

∂E = MK1 *MK2 *MK1#−K2 W ′ = V ∪
MK1#−K2

E

∂F1 = MJ *MR *MK1 W = W ′ ∪
MK1

F1 ∪
MK2

F2

∂F2 = ML *MR *MK2 Z = W ∪
MJ

G

∂G = MJ0 *MR *MJ

Unfortunately, the derived series itself will not be useful in finding an obstruction

to the 2.5-solvablity of K1#−K2. Instead, we define a partial commutator series, S,

which will be slightly larger than the rational derived series so that

π1(Z)
(3) ⊂ π1(Z)

(3)
S .
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Notice in Definition 4.6, S will be equivalent to the rational derived series on the first

two terms.

Definition 4.6. Let G be a group with G/G(1) = 〈µ〉 ∼= Z and let η ∈ G(1)/G(2)
r and

q(t) ∈ Q[t, t−1]. Then the derived series localized at S is defined recursively by

G(0)
S ≡ G

G(1)
S = G(1)

r ≡ ker

(
G → G

[G,G]
⊗Z Q

)

G(2)
S = G(2)

r ≡ ker

(
G(1)

S → G(1)
S

[G(1)
S , G(1)

S ]
⊗Z[G/G

(1)
S ]

Q[G/G(1)
S ]

)

G(3)
S ≡ ker

(
G(2)

S → G(2)
S

[G(2)
S , G(2)

S ]
⊗Z[G/G

(2)
S ]

Q[G/G(2)
S ]S−1

)
.

The set S ⊂ Q[G(1)
S /G(2)

S ] ⊂ Q[G/G(2)
S ] is the multiplicative set generated by

{q(µiηµ−i)|i ∈ Z, η ∈ G(1)/G(2)
r }. S is a multiplicatively closed set with unity by

definition, and 0 is not an element of S. Since Q[G(1)/G(2)
S ] is commutative, this

verifies S is a right divisor set of Q[G(1)/G(2)
S ]. Furthermore, let γ ∈ G/G(2)

S . If

q(a) ∈ S, then γq(a)γ−1 = q(γaγ−1) ∈ S. Therefore, S is invariant under conjuga-

tion by Q[G/G(2)
S ]. By Theorem 2.10, S is a right divisor set of Q[G/G(2)

S ]. In the case

that G = π1(Z) or G = π1(W ), we choose q(t) to be ∆L(t) and η to be η′2, the image

of η2 in M−R ⊂ MR#−R considered as an element of π1(Z) or π1(W ) by inclusion.

Consider the coefficient system on W given by the projection

Φ : π1(Z) → π1(Z)/π1(Z)
(3) → π1(Z)/π1(Z)

(3)
S ≡ Λ.

Because of property (4) of Proposition 2.19 (and after suppressing notation by σ(2)
Λ =
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σ(2) and Φ|X = Φ where understood), we have

σ(2)(Z,Φ)− σ(Z) =
(
σ(2)(V,Φ)− σ(V )

)
+
(
σ(2)(E,Φ)− σ(E)

)

+
(
σ(2)(F1,Φ)− σ(F1)

)
+
(
σ(2)(F2,Φ)− σ(F2)

)

+
(
σ(2)(G,Φ)− σ(G)

)
.

(4.1)

By assumption, V is a 2.5-solution. Property (6) of Proposition 2.19 yields σ(2)(V,Φ)−

σ(V ) = 0. For E,F1, F2, and G, all of the (integral and twisted) second homology

comes from the boundary [CHL09, Lemma 2.4], and

σ(2)(E,Φ)−σ(E) = σ(2)(F1,Φ)−σ(F1) = σ(2)(F2,Φ)−σ(F2) = σ(2)(G,Φ)−σ(G) = 0.

However, σ(2)(Z,Φ)− σ(Z) = ρ(∂Z,Φ|∂), and

0 = ρ(∂Z,Φ) = ρ(MJ0 ,Φ) + ρ(ML,Φ) + ρ(MR,Φ) + ρ(MR,Φ) + ρ(MR,Φ).

We employ the following lemmas but delay their proof.

Lemma 4.8 The restriction of Φ to π1(MJ0) factors non-trivially through Z.

Lemma 4.10 The restriction of Φ to π1(ML) also factors through Z and

yields ρ(ML,Φ) = 0.

After proving Lemma 4.8 and using properties (1) and (3) of Proposition 2.19, we

will have ρ(MJ0 ,Φ) = ρ0(J0). Secondly, by Lemma 4.10 and property (2) of Propo-

sition 2.19, ρ(ML,Φ) = −ρ(ML,Φ) = 0. Together with equation 4.1, this yields the

following equation:

ρ0(J0) = −ρ(MR,Φ)− ρ(M−R,Φ)− ρ(MR,Φ).

This is a contradiction since, by hypothesis,

|ρ0(J0)| > CR + 2CR ≥ |ρ(MR,Φ)|+ |ρ(M−R,Φ)|+ |ρ(MR,Φ)|.
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This completes the proof of Theorem 4.1 modulo the proofs of Lemmas 4.8 and

4.10

We are now prepared to prove the lemmas needed for the completion of the proof

of Theorem 4.1. Before proving Lemma 4.8, we must first show that the curve η1

represents a nontrivial element of π1(W )(1)/π1(W )(2)S by inclusion. Note that π1(MJ0)

is normally generated by the meridian µ(J) which is isotopic in Z to β ∈ π1(MR)(1).

Similarly, π1(MR) is normally generated by its meridian µ(R) which is identified with

η1. Inclusion induces

η1 ∈ π1(MR)
(1) → π1(W )(1) → π1(Z)

(1)

which implies that µ(J) ∼ β is in π1(Z)(2). If η1 ∈ π1(Z)(2), then π1(MJ0) is mapped

to a subset of π1(Z)(3) and the restriction of Φ to π1(MJ0) is trivial.

Continue to let η′2 ⊂ MR#−R denote the image of η2 after reversing the orientation

ofMR and taking the connected sum to formMR#−R. By an added abuse of notation,

η1 and η′2 also represent the corresponding elements in the Alexander module and

fundamental group. Let A(X) denote the Alexander module of the space X with

rational coefficients. The following proofs closely follow the methodology of [CHL11,

Lemmas 7.5, 7.6].

Lemma 4.7. The curve η1 represents a nontrivial element of A ≡ π1(W )(1)/π1(W )(2)S .

Proof. Consider the following commutative diagram of Alexander modules.

AZ(R#−R) AZ(V ) AZ(W ′) AZ(W ) A

A(R#−R) A(V ) A(W ′) A(W )
##

i1

$$
φ∗

##
i2

$$
f∗

##
i3

$$
g∗

##
i5

$$

""

i6

$$
φ′
∗

$$
f ′
∗

$$
g′∗

(4.2)
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The validity of this diagram is supported by the fact that AZ(K1#−K2) ∼=

AZ(R#−R). The horizontal maps are induced by inclusion. Since AZ(R#−R) is

Z-torsion free, i1 is injective. By Definition 4.6, π1(W )(2)S = π1(W )(2)r , and therefore

i6 : π1(W )(1)/π1(W )(2)S → A(W ) is well-defined.

The kernel of φ′
∗ is an isotropic submodule of A(R# − R) with respect to the

Blanchfield form. Since the rational Alexander module ofR#−R and its Blanchfield

form decompose under connected sum, B'R(η1, η1) 3= 0 implies η1 must be mapped

to a nontrivial element of A(V ).

It remains to show that the lower maps f ′
∗ and g′∗ are injective; that is, the rational

Alexander module of V injects into that of W . Since the connected sum operation

may be described as the satellite operation K1#−K2 = K1(µ(K1),−K2), the kernel

of f ′
∗ : π1(MK1#−K2) = π1(∂V ) → π1(E) is normally generated by the longitude of

−K2 considered as an element of π1(MK1) [CHL09, Lemma 2.5(1)]. The longitude lies

in the second derived subgroup of π1(K2) and also in the second derived subroup of

π1(MK1#−K2). Since the rational Alexander module of a space, X, with H1(X) ∼= Z is

given by A(X) ∼= π1(X)(1)/π1(X)(2) ⊗Z Q, f ′
∗ is an isomorphism between the rational

Alexander modules of V and W ′.

Similarly, to show g′∗ is injective, we note that its kernel is normally generated by

the longitudes of J and L considered as curves in MK1 and MK2 respectively. These

lie in π1(MJ)(2) and π1(ML)(2), contained via inclusion in π1(MK1)
(3) and π1(MK2)

(3)

respectively, and thus g′∗ is an isomorphism.

For the contradiction used in the proof of Theorem 4.1, we show that µ(J0) ∼ β
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is nontrivial as an element of π1(Z)(2)/π1(Z)
(3)
S .

Lemma 4.8. The meridian of J0, µ(J0), which is isotopic in Z to β, is nontrivial as

an element of

π1(Z)(2)

π1(Z)
(3)
S

.

Therefore, the restriction Φ : π1(MJ0) → π1(Z)/π1(Z)
(3)
S = Λ factors nontrivially

through Z.

Proof. Recall that the kernel of

π1(W ) → π1(W ∪G) = π1(Z)

is the normal closure in π1(W ) of the kernel of π1(MJ) → π1(G). This is normally

generated by the longitude of the companion knot J0 considered as a curve in S3\J0 ⊂

MJ ⊂ ∂W [CHL09, Lemma 2.5 (1)] which lies in π1(MJ0)
(2). Inclusion induces

π1(MJ0)
(2) → π1(MJ)

(3) → π1(W )(3) ⊆ π1(W )(3)S

as well as the following isomorphism:

π1(W )

π1(W )(3)S

∼=
π1(Z)

π1(Z)
(3)
S

= Λ.

Therefore, it suffices to show β is nontrivial π1(W )/π1(W )(3)S . Consider the following

commutative diagram, where we set Γ ≡ π1(W )/π1(W )(2)S and Q ≡ QΓS−1. Here, S

is the multiplicative set from Definition 4.6.
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π1(MJ)
(1) π1(W )(2)

π1(W )(2)S

π1(W )(3)S

A(J)⊗Q H1(MJ ;Q) H1(W ;Q)
π1(W )(2)S

[π1(W )(2)S , π1(W )(2)S ]
⊗Q

##

$$
j∗

##

$$
Φ

##
j

$$
∼=

$$
j∗

$$
∼=

(4.3)

We will now justify certain maps of the diagram. Here, the horizontal map j∗

is given by functoriality of the derived series and inclusion which induces π1(MJ) →

π1(W )(1). Since π1(MJ) is normally generated by the meridian µ(J) which is identified

with η1 in W which by Lemma 4.7 is nontrivial in A = π1(W )(1)/π1(W )(2)S , the map

π1(MJ) →
π1(W )(1)

π1(W )(2)S

↪→ π1(W )

π1(W )(2)S

≡ Γ

must factor nontrivially through π1(MJ)/π1(MJ)(1) = 〈µ(J)〉 ∼= Z. It follows that

H1(MJ ;QΓ) ∼= H1(MJ ;Q[t, t−1])⊗QΓ ∼= A(J)⊗Q[t,t−1] QΓ

where Q[t, t−1] acts on QΓ by t 1→ η1. Thus, H1(MJ ;Q) ∼= A(J)⊗Q. To justify the

map

H1(W ;Q)
∼=−→ π1(W )(2)S

[π1(W )(2)S , π1(W )(2)S ]
⊗Q, (4.4)

note that we may interpret H1(W ;ZΓ) as the first homology of the Γ covering space

of W , so

H1(W ;ZΓ)
∼=−→ π1(W )(2)S

[π1(W )(2)S , π1(W )(2)S ]
.

Since Q is a flat ZΓ-module, equation (4.4) is justified. Moreover, by the definition

of π1(W )(3)S in Definition 4.6, the vertical map j is well-defined. Recall that by

hypothesis, β generates the rational Alexander module of R, and hence J , which
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implies β ⊗ 1 is the generator of H1(MJ ;Q). Therefore, in order to finish the proof,

it suffices to show that β ⊗ 1 is not in the kernel of the bottom row of (4.3).

Note that W is given by V ∪E ∪F1 ∪F2 with ∂W = MR *MJ *MR *ML. Since

E,F1, F2 have no second homology relative boundary,

H2(W )

i∗ (H2(∂W ))
∼= H2(V ).

Furthermore, V is a 2-solution and therefore H2(W )/i∗ (H2(∂W )) has a basis which

satisfies conditions 2 and 3 of Definition 2.17 though it fails condition 1. Therefore,

W is called a 2-bordism for ∂W [CHL10, Definition 7.11].

Suppose P ≡ ker{j∗ : H1(MJ ;Q) → H1(W ;Q)}. Then, since W is a 2-bordism,

by [CHL10, Theorem 7.15], P is an isotropic submodule of H1(MJ ;Q) with respect

to the Blanchfield form on H1(∂W ;Q). However, we have already shown that β ⊗ 1

is a generator of H1(MJ ;Q), and if β⊗ 1 ∈ P , then B'QJ (β⊗ 1, β⊗ 1) = 0. Since B'QJ

is nonsingular [CHL10, Lemma 7.16], this means H1(MJ ;Q) ∼= 0. In order to give a

contradiction, we show

A(J)⊗Q ∼=
(

QΓ

∆R(η1)QΓ

)
S−1 3= 0.

By the hypotheses of Theorem 4.1, the rational Alexander module of R is non-

trivial, and ∆R(t) is not a unit in Q[t, t−1]. The map Z → Γ given by t 1→ η1 is

nontrivial, since we showed in Lemma 4.7 that η1 3= 0 in π1(W )(1)/π1(W )(2)S . Since Γ

is torsion-free, QΓ is a free left Q[η1, η
−1
1 ]-module on the set of right cosets of 〈η1〉 ⊂ Γ,

where 〈η1〉 denotes the submodule of QΓ generated by η1. We may then fix a set of
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coset representatives so that any x ∈ QΓ has a unique decomposition

x =
∑

ξ

xξξ,

where each xξ ∈ Q[η1, η
−1
1 ] and each ξ is a coset representative in Γ. Notice that if

∆R(η1)x = 1 then

∆R(η1)x = ∆R(η1)
∑

ξ

xξξ =
∑

ξ

∆R(η1)xξξ = 1.

This implies that on the coset ξ = e, we have∆R(η1)xe = 1 inQ[η1, η
−1
1 ], contradicting

the fact that ∆R(t) is not a unit in Q[t, t−1]. Therefore, ∆R(η1) has no right inverse

in QΓ. Since Γ is poly-torsion-free abelian, QΓ is a domain [Str74] and

QΓ

∆R(η1)QΓ
# 0.

Next, we consider the localization of this module at S. The kernel of

QΓ

∆R(η1)QΓ
→ QΓ

∆R(η1)QΓ
S−1

is the S-torsion submodule [Ste75, Cor 3.3, p 57]. So to establish the desired result, it

suffices to show that the generator ofQΓ/∆R(η1)QΓ is not S-torsion. If this generator,

which we denote by 1, is S-torsion, then 1s = ∆R(η1)y for some s ∈ S and y ∈ QΓ.

Remember that Γ ≡ π1(W )/π1(W )(2)S and A ≡ π1(W )(1)/π1(W )(2)S # Γ. Since

A ⊂ Γ, we may view QΓ as a free left QA-module on the set of right cosets of A in

Γ. So any y ∈ QΓ has a unique decomposition

y =
∑

ξ

yξξ,
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where the sum is over a set of coset representatives {ξ ∈ Γ} and yξ is an element of

QA. Then

s =∆R(η1)y

=∆R(η1)
∑

ξ

yξξ.

Since s ∈ S ⊂ QA and ∆R(η1) ∈ QA, it must be that each coset representative

ξ 3= e yields 0 = ∆R(η1)yξ. Note that Q[η1, η
−1
1 ] ⊂ QΓ and hence ∆R(η1) 3= 0. Since

QA ⊂ QΓ is a domain, it must be that yξ = 0 for all ξ 3= e. Therefore y ∈ QA and

s = ∆R(η1)y is an equation in QA. Because of Definition 4.6, each element of S can

be written as the product of terms of the form ∆L(µiη′2µ
−i).

Moreover, since A is a torsion-free abelian group, we may view s = ∆R(η1)y as

an equation in the group ring QF for some free abelian group F ⊂ A of finite rank

r. Since QF is a UFD, we apply the following proposition.

Proposition 4.9 ([CHL10, Proposition 4.5]). Suppose ∆R(t),∆L(t) ∈ Q[t, t−1] are

non zero. Then ∆R and ∆L are strongly coprime if and only if, for any finitely

generated free abelian group F and any nontrivial a, b ∈ F , ∆R(a) is relatively prime

to ∆L(b) in QF .

Recall if s = ∆R(η1)y is an equation in S, ∆R(η1) must divide a product of terms

of the form ∆L(µiη′2µ
−i). If ∆R and ∆L are strongly coprime, we already arrive at a

contradiction, since Proposition 4.9 implies ∆R(η1) is relatively prime to ∆L(µiη′2µ
−i)

for any i. Otherwise, choose some basis {x1, x2, . . . , xr} for F such that η1 = xm
1 for

some positive m ∈ Z. Then µiη′2µ
−i = x

ni,1

1 x
ni,2

2 · · · xni,r
r , and we may view QF as a

Laurent Polynomial ring in the variables {x1, x2, . . . , xr}. Since ∆R 3= 0 and is not a
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unit, there exists some nonzero complex root, ζ, of ∆R(xm
1 ). Suppose that p̃(x1) is

a nonzero irreducible factor of ∆R(xm
1 ) of which ζ is a root. Then for some i, p̃(x1)

divides ∆L(x
ni,1

1 x
ni,2

2 · · · xni,r
r ) and so ζ must be a zero of ∆L(x

ni,1

1 x
ni,2

2 · · · xni,r
r ) for

every complex value of x2, . . . , xr which is impossible unless ni,j = 0 for each j > 1.

Therefore, µiη′2µ
−i = xni

1 for some ni 3= 0. Recall that ∆R(tm) and ∆L(tn) share no

common roots unless n = ±m. Thus ni = ±m and µiη′2µ
−i = (η1)±1 for some i.

This equation holds in A but each of η1, η′2, and µ are given by circles in MR#−R

where µiη′2µ
−i and η1 represent elements of AZ(R#−R). Therefore, the validity

of the equation µiη′2µ
−i = (η1)±1 may be considered in AZ(R#−R) as long as

(µiη′2µ
−i)η∓1

1 does not lie in the kernel of

AZ(R#−R) → AZ(W ) → π1(W )(1)

π1(W )(2)S

≡ A.

Notice however, that in the module notation for AZ(R#−R),

(µiη′2µ
−i)η∓1

1 = τ i∗(η
′
2)∓ η1,

and we consult the Blanchfield form:

B'R#−R(τ i∗(η
′
2)∓ η1, τ i∗(η

′
2)∓ η1) = B'−R(τ i∗(η

′
2), τ

i
∗(η

′
2)) + B'R(η1, η1)

= B'−R(η′2, η
′
2) + B'R(η1, η1)

= −B'R(η2, η2) + B'R(η1, η1)

3= 0.

The last inequality holds since the requirement imposed upon η1, η2 was that

B'R(η1, η1) 3= B'R(η2, η2). Therefore, if the equality µiη′2µ
−i = (η1)±1 holds in A, it

must hold in AZ(R# − R) where it is written as τ i∗(η
′
2) = η±1

1 . Let U and U ′ be
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Seifert matrices for R and −R respecitvely. We remark that although U ′ = −U , this

distinction is made to emphasize the different contributions from the respective basis

elements coming from the Seifert surfaces of R and −R. A presentation matrix for

the Alexander module AZ(R#−R) is given by




U − τ∗Uᵀ 0

0 U ′ − τ∗U ′ᵀ



 .

The automorphism τ∗ decomposes under connected sum R#−R. Thus τ∗(AZ(R)⊕

0) ⊂ AZ(R) ⊕ 0 and τ∗(0 ⊕ AZ(−R)) ⊂ 0 ⊕ AZ(−R), invalidating the equation

τ i∗(η
′
2) = η±1

1 . This contradicts the equality of the statement µiη′2µ
−i = η±1

1 in A

and therefore contradicts the assumption that the generator of QΓ/∆R(η1)QΓ is S-

torsion. Thus A(J)⊗Q is nontrivial, and β⊗1 cannot lie in the kernel of the bottom

row of 4.3. This completes the proof that µ(J0) ∼ β is nontrivial in π1(Z)(2)/π1(Z)
(3)
S

so the restriction of Φ to π1(MJ0) factors nontrivially through Z.

Our last task is to show that ρ(ML,Φ) = 0, which we complete in the following

short lemma.

Lemma 4.10. The restriction of Φ to π1(ML) also factors through Z and ρ(ML,Φ) =

0.

Proof. Similar to the beginning of Lemma 4.8, we begin with the following commu-

tative diagram.
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π1(ML)
(1) π1(W )(2)

π1(W )(2)S

π1(W )(3)S

A(−L)⊗Q H1(ML;Q) H1(W ;Q)
π1(W )(2)S

[π1(W )(2)S , π1(W )(2)S ]
⊗Q

##

$$
j∗

##

$$
Φ

##j

$$
∼=

$$
j∗

$$
∼=

(4.5)

Again, j∗ is given by functoriality of the comutator series and inclusion given that

π1(ML) → π1(W )(1). Again, π1(ML) is normally generated by its meridian, µ(L),

which is identified with η′2. Suppose that η
′
2 is nontrivial in π1(W )(1)/π1(W )(2)S . Then

the map

π1(ML) →
π1(W )(1)

π1(W )(2)S

↪→ π1(W )

π1(W )(2)S

must factor through π1(ML)/π1(ML)(1) = 〈µ(L)〉 ∼= Z, and

H1(ML;QΓ) ∼= H1(ML;Q[t, t−1])⊗QΓ ∼= A(−L)⊗Q[t,t−1] QΓ.

Here Q[t, t−1] acts on QΓ by t 1→ µ(L) 9 η′2. This implies H1(ML;Q) ∼= A(−L) ⊗

Q. Since the rational Alexander module of L is ∆L(t)-torsion and ∆L(η′2) ∈ S by

definition, this module is trivial. Since j is injective, this implies that the map along

the top row of Diagram 4.5 is zero.

On the other hand, suppose η′2 is trivial in π1(W )(1)/π1(W )(2)S . Since π1(ML)

is normally generated by µ(L) 9 η′2 in Z, this implies j∗(π1(ML)) ⊂ π1(W )(2)S by

inclusion and the map along the top row of the diagram is again zero.

Finally, consider the restriction of Φ to π1(ML):

Φ : π1(ML) →
π1(W )

π1(W )(3)S

.
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By the above arguments, this map is trivial on the subgroup π1(ML)(1) ⊂ π1(ML) and

must factor through π1(ML)/π1(ML)(1) ∼= Z. There are two easy cases to consider.

If the map is trivial, we have ρ(ML;Φ) = 0. Otherwise, the map factors nontrivially

through Z and ρ(ML;Φ) = ρ0(−L) = 0 since L is a 1-solvable knot. This finishes the

proof of the Lemma 4.10 and completes the proof of Theorem 4.1.

4.1 Example: Satellites of the 946 Knot

In this section, we give an explicit example of Corollary 4.3. We take R = 946 so that

∆R(t) = −2t2 +5t− 2. Our axes, however, will not be the same as those constructed

in the proof of Corollary 4.3. Note that the curves a and b, as shown in Figure 4.3,

generate the integral Alexander module of R, and η = a + b generates the rational

Alexander module. In AZ(R), we have the relations:

2ta = a ⇒ (2t− 1)a = 0, (4.6)

tb = 2b ⇒ (t− 2)b = 0. (4.7)

Any element, γ, of the integral Alexander module may be written as a polynomial

combination of a and b, that is γ = x(t)a + y(t)b ∈ AZ, where x(t), y(t) ∈ Z[t, t−1].

Let Q denote the subring Z[2−1] ⊂ Q, and consider the map

AZ(R) → AZ(R)⊗Z Q.

Because of identities 4.6 and 4.7,

tra 1→ 2−ra, trb 1→ 2rb.
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Therefore,

x(t)a 1→ x(2−1)a, y(t)b 1→ y(2)b,

and γ 1→ x(2−1)a + y(2)b, where x(2−1), y(2) ∈ Q⊂ Q. These equations hold as we

map to the rational Alexander module:

AZ(R) → AZ(R)⊗Z Q → AZ(R)⊗Z Q ∼= A(R).

a b
η

Figure 4.3: The ribbon knot R = 946. Note η = a+ b in AZ(R).

Since η is the generator of A(R) which is nontrivial, B'R(η, η) 3= 0. Let K1 =

R(η; J), where J is constructed as in the statement of Corollary 4.2. Suppose γ =

x(t)a+ y(t)b ∈ AZ(R), and let K2 = R(γ; J). The rational Blanchfield self-linking of

γ is given by

B'R(γ, γ) = B'R
(
x(t)a+ y(t)b, x(t)a+ y(t)b

)

= B'R (x (2−1) a+ y (2) b, x (2−1) a+ y (2) b)

=
[
x (2−1)2 B'R(a, a)

]
+ [x (2−1) y (2)B'R(a, b)]

+ [x (2−1) y(2)B'R(b, a)] +
[
y (2)2 B'R(b, b)

]

= x (2−1) y (2)
(
B'R(a, b) + B'R(b, a)

)

= x (2−1) y(2)B'R(η, η).

(4.8)
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Here B'R(a, a) = B'R(b, b) = 0 since a and b both generate isotropic submodules of

AZ(R). Corollary 4.2 states that K1 and K2 are distinct up to concordance as long as

B'R(η, η) 3= B'R(γ, γ) which from (4.8) is equivalent to (1− x(2−1)y(2))B'R(η, η) 3=

0. Recall that a formula for the Blanchfield form can be given by a Seifert matrix U

for R:

B'(r, s) = s(1− t) (tU − Uᵀ)−1 r

where s is the image of s under the involution t 1→ t−1 [Kea78]. The Seifert matrix

for R yielding a presentation matrix for A(R) with respect to the basis {a, b} is



0 −1

−2 0



 ,

and by a simple calculation,

B'R(η, η) =
3(t− 1)2

∆R(t)
, where (3(t− 1)2,∆R(t)) = 1.

This implies (1−x(2−1)y(2))B'R(η, η) is zero if and only if 1−x(2−1)y(2) is a multiple

of ∆R(t). This is only possible if x(2−1) and y(2) are inverses in Q ⊂ Q, and it must

be that x(2−1) = ±2−r andy(2) = ±2r with the same sign. Therefore, x(t)a and

y(t)b are equivalent in AZ(R) to ±tra and ±trb respectively and with the same sign.

Therefore, x(t)a+y(t)b = ±(tra+ trb) = ±trη. Since the element ±trη is represented

by the curve ±η in S3 \ R, regardless of r, we see that infection upon η and γ may

yield concordant satellites only if γ = ±η.

More generally, let γi = xi(t)a + yi(t)b where xi(t), yi(t) ∈ Z[t, t−1] for i = 1, 2.

Then by (4.8), B'R(γ1, γ1) = B'R(γ2, γ2) if and only if (x1y1 − x2y2)B'R(η, η) = 0,

where for simplicity we set xi ≡ xi(2−1) and yi ≡ yi(2) ∈ Q ⊂ Q. This is zero in
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γ1

γ2

Figure 4.4: These curves, γ1 = (t + t−1)a + b, and γ2 = ta + (t2 + 1)b as elements of

AZ(946), have the property that B'R(γ1, γ1) = B'R(γ2, γ2).

Q(t)/Q[t, t−1] when x1y1 = x2y2 in Q. For every distinct value ci ∈ Z[1/2], we can

find an unknotted curve γi ⊂ S3 \ R with 'k(R, γi) = 0 and such that B'QR(γi, γi) =

ciB'QR(η, η). If ci = ĉi2−ki for ĉi, ki ∈ Z, γi may be given by γi = tkia+ ĉib. Thus, each

ci yields a distinct concordance class Ki = R(γi, J). We summarize these results in

the following lemma and also in the graph of Figure 4.5.

Lemma 4.11. Let R be the 946 knot and J the knot given in Corollary 4.2. For every

ci ∈ Z[1/2], we obtain an unknotted curve ηi ⊂ S3 \ R with 'k(ηi,R) = 0. The {ηi}

yield infinitely many distinct concordance classes of satellite knots Ki = R(ηi, J).

Nonetheless, there are many combinations of x1, y1, x2, y2 ∈ Z[1/2] for which

x1y1 = x2y2. For instance, take γ1 = (t+ t−1)a+ b, γ2 = ta+(t2+1)b as in Figure 4.4.

Although these curves are not isotopic in S3 \ R, x1y1 = x2y2 = 5/2 implying that

γ1+γ′
2 lies in an isotropic submodule of the rational Alexander module, A(R#−R),

and thus potentially in the kernel of the map

AZ(R#−R)
φ∗−→ AZ(V )
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Figure 4.5: Each level curve in this graph is given by xy = c ∈ Z[1/2]. An isotopy

class of γ = x(t)a + y(t)b in S3 \ R with B'R(γ, γ) = c are represented by shaded

points (x(2−1), y(2)) on the level curves. Choices of γi lying on different level curves

lead to nonconcordant knots R(γi, J).

for some potential 2.5-solution of K1#−K2. Infection upon γ1 and γ2 by J may thus

produce concordant knots as we saw in Example 2.21.



Chapter 5

Satellites Distinguished by

Higher-Order Blanchfield Forms

The overarching goal is to distinguish knots obtained by satellite operations

K1 = R(η1, J), and K2 = R(η2, J),

where η1 and η2 are “different” axes in S3 \ R. In Theorem 3.1, we distinguish the

concordance classes ofK1 andK2 when η1 and η2 have distinct orders in AZ(R). More

generally, in Theorem 4.1, we prove K1 and K2 often represent distinct concordance

classes when η1 and η2, viewed as elements ofAZ(R), are distinguished by the classical

Blanchfield linking form, that is,

B'R(η1, η1) 3= B'R(η2, η2).

We are now prepared to strengthen these results. Suppose η1 and η2 are equivalent

when viewed as elements of the classical Alexander module. Our goal is to find

sufficient conditions to distinguish K1 and K2.

66
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First, define a partial commutator series on the class of groups G with G/G(1) =

〈µ〉 ∼= Z. This commutator series will be weakly functorial and each quotient G/G(n)
x

will be poly-(torsion-free abelian). For the first term, take

G(1)
x = G(1)

r = ker

{
G → G

[G,G]
⊗Z Q

}
. (5.1)

In the usual derived series, whenever β1(G) = 1, G(1)
r /G(2)

r is a torsion right Q[t, t−1]-

module where the t action is given by conjugation. Fix some element g ∈ G(1)
x which

is nonzero in AZ(G). Further terms of the commutator series x will be a function of

g. There exists some unique minimal polynomial p1(t) ∈ Z[t, t−1] such that g · p1(t)

is trivial in AZ(G). Let S1 ⊂ Q[t, t−1] be the multiplicative set generated by p1(t)

and p1(t−1). Since Q[t, t−1] is a commutative ring, it follows immediately that S1 is a

divisor set of Q[t, t−1], and furthermore Q[t, t−1]S−1
1 inherits the natural involution.

Define the second term of the commutator series as

G(2)
x = ker




G(1)
x → G(1)

x[
G(1)

x , G(1)
x

] σ2−→ G(1)
x[

G(1)
x , G(1)

x

] ⊗
Z[t,t−1]

Q[t, t−1]S−1
1




 . (5.2)

This map σ2 kills all S1-torsion in G(1)
x /[G(1)

x , G(1)
x ] and hence g ∈ G(2)

x . For the third

term of the commutator series, we need only annihilate Z-torsion:

G(3)
x = ker




G(2)
x → G(2)

x[
G(2)

x , G(2)
x

] ⊗
Z[G/G

(2)
x ]

Q
[
G/G(2)

x

]



 . (5.3)

At the fourth level, choose some symmetric Laurent polynomial p2(t) ∈ Z[t, t−1] such

that p2(1) = ±1. Let S3 ⊂ Q[G(2)
x /G(3)

x ] be the multiplicative set with unity generated

by polynomials of the form

{
p2(g

±g)|g ∈ G/G(3)
x

}
, (5.4)
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where g±g = g−1g±1g. Since G(2)
x /G(3)

x is a normal subgroup of G/G(3)
x , each g±g =

g−1g±1g is an element of G(2)
x /G(3)

x and each p2(g±g) ∈ Q[G(2)
x /G(3)

x ]. The image of

p2(g±g) under the augmentation map is ±1 since p2(1) = ±1, which implies that

0 3∈ S3. Since Q[G(2)
x /G(3)

x ] is a commutative domain, S3 is a right divisor set of

Q[G(2)
x /G(3)

x ]. If h ∈ G/G(3)
x , we have

h−1p2(g
±g)h = p2(h

−1g±gh) = p2(g
±gh)

where g±gh = h−1(g−1g±1g)h = (gh)−1gpm1(gh). So S3 is G/G(3)
x -invariant and is a

right divisor set of Q[G/G(3)
x ] by Proposition 2.10. We localize at S3 to obtain the

fourth term of the commutator series:

G(4)
x = ker




G(3)
x → G(3)

x[
G(3)

x , G(3)
x

] ⊗
Z[G/G

(3)
x ]

Q
[
G/G(3)

x

]
S−1
3




 . (5.5)

Note that since S3 is closed under involution, Q[G/G(3)
x ]S−1

3 inherits the natural in-

volution from Q[G/G(3)
x ].

Proposition 5.1. Suppose H1(G,Z) ∼= H1(H,Z) ∼= Z. The commutator series x

is functorial with respect to homomorphisms G → H which are isomorphisms on

Z-homology and send gG to gH .

Proof. Suppose ι : G → H induces an isomorphism H1(G;Z)
∼=−→ H1(H;Z) and

ι(gG) = gH . The commutator series is defined using the right divisor sets Si(G) and

Si(H). By [CHL10, Proposition 3.2], we need only check that ι sends the right divisor

sets Si(G) to right divisor sets Si(H). Note that ι induces H1(G,Z)
∼=−→ H1(H,Z) ≡

〈t〉 ∼= Z sending tG 1→ tH , and S1(G) is generated by p1(tG) and p1(t
−1
G ). Since gG is
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p1(tG)-torsion, gG · p1(tG) = 0 in AZ(G), and gG · p1(tG) is represented by an element

in G(2),

gG · p1(tG) =
∏

µ−i
G gciGµ

i
G

where p1(t) =
∑

i cit
i. Since the derived series is functorial, ι∗(gG·p1(tG)) = gH ·p1(tH)

is represented by an element of H(2), and so gH ∈ H(2)
x /H(3)

x . Hence, the order of gH

divides p1(tG) and ι∗(S1(G)) ⊂ S1(H).

By [CHL10, Proposition 3.2], ι(G(3)
x ) ⊂ H(3)

x . We must next check that ι∗(S3(G))

is contained in S3(H), but this is clear since S3 is the multiplicative set in Q[G/G(3)
x ]

generated by

{
p2(g

±g
G )|g ∈ G/G(3)

x , g±g
G = g−1g±1

G g
}
,

and g±g
G 1→ g±ι(g)

H for ι(g) ∈ H/H(3)
x . Hence, ι∗(S3(G)) ⊂ S3(H).

In the construction of the commutator series x above, we were motivated by the

choice of the “special element” g. Before proceeding, note that the polynomial p1(t)

may be chosen and thus the second term of the commutator series defined for all

groups with first homology isomorphic to Z before specifying g. Furthermore, the

partial commutator series G(n)
∗ is weakly functorial for n ≤ 3 if p1(t) chosen to be

some fixed polynomial in Q[t, t−1] by [CHL10, Corollary 4.3]. In the statement of

Theorem 5.2 below, we need only the first three terms of the commutator series, and

the exact choice of g needed for the construction of the right divisor set S3, and hence

the fourth term of the commutator series, will be revealed in the proof.

Let R be a ribbon knot. In order to apply this series to π1(MR), choose some

unknotted curve η which has 'k(η,R) = 0 and is nontrivial in AZ(R). Let p1(t) be
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the order of η as an element of AZ(R). Hence p1(t) divides ∆R(t), and η ∈ π1(MR)
(2)
x .

Since the choice of the polynomial p2(t) (or even the fourth term of the commutator

series) will not be necessary for the statement of our theorem, it will be chosen later.

Let Γ2 denote π1(MR)/π1(MR)
(2)
x and KΓ2 denote the fraction field of QΓ2. Con-

sider the first homology of MR under the coefficient system induced by π1(MR) → Γ2,

H1(MR;QΓ2). By [COT03, Theorem 2.13], there exists a symmetric linking form

B'Γ2
R : H1(MR;QΓ2)×H1(MR;QΓ2) → KΓ2/QΓ2. (5.6)

Suppose P̃ is an isotropic submodule of H1(MR;Q[t, t−1]S−1
1 ) with respect to the

localized Blanchfield form, and let P be the subgroup of π1(MR)(1)/π1(MR)
(2)
x which

maps to P̃ in the localized Alexander module. Since

Γ2 =
π1(MR)(1)

π1(MR)
(2)
x

$ π1(MR)

π1(MR)(1)
,

every element of Γ2 may be written uniquely as the product g = hµk where h ∈

π1(MR)(1)/π1(MR)
(2)
x and µk ∈ π1(MR)/π1(MR)(1) ∼= 〈µ(R)〉. Let p be an arbitrary

element of P . Then

g−1pg = (hµk)−1p(hµk) = µ−kpµk.

As an element of the Alexander module, µ−kpµk is written as ptk, and since P̃ is a

submodule of AZ(R), ptk ∈ P̃ . Hence P is a normal subgroup of Γ2. Denote Γ2/P by

ΓP
2 . The map π1(MR) → Γ2 → ΓP

2 yields the higher-order module H1(MR;QΓP
2 ), and

by [COT03, Theorem 2.13], there exists a symmetric linking form on H1(MR;QΓP
2 ),

which we denote by B'QΓP
2

R . This linking form will provide the necessary obstruction
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to the concordance of the satellitesR(η1, J) andR(η2, J) when the axes are equivalent

to η the classical Alexander module.

Theorem 5.2. Let R be a ribbon knot and η be an unknotted curve in S3 \R ⊂ MR

with 'k(R, η) = 0 and which represents a nontrivial element of AZ(R). Suppose that

γ is an unknotted curve in S3 \ R ⊂ MR which represents a nontrivial element of

π1(MR)(2)/π1(MR)(3). Then let ηγ denote the unknotted curve in S3 \ R which is

equivalent to ηγ in π1(MR). Suppose

B'QΓP
2

R (ηγ, ηγ) 3= B'QΓP
2

R (η, η) (5.7)

holds for any subgroup

P ⊂ π1(MR)(1)

π1(MR)
(2)
x

,

mapping to an isotropic submodule of H1(MR;Q[t, t−1]S−1
1 ) and where S1 is defined by

setting p1(t) to be the order of η. Then the knots K1 = R(η1, J) and K2 = R(η2, J),

are distinct in C for some knot J where η1 = ηγ and η2 = η. In particular, R(η,−)

and R(ηγ,−) are distinct maps on C.

Remark 5.3. 1. Before beginning the proof, we want to emphasize that the knot J

is independent of both the choice of η and γ and is dependent only on R. This

will be shown in the proof of Theorem 5.2.

2. We assume without loss of generality that B'QΓP
2

R (ηγ, ηγ) 3= 0, since otherwise

we reverse the roles of η and ηγ by setting η1 = ηγ and η2 = η = η1γ−1 since

γ−1 satisfies the hypotheses of the theorem.
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k

βk

Figure 5.1: The ribbon knot Rk and axis βk.

Proof. This proof is similar to that of Theorem 4.1 and is also by contradiction.

Suppose K1 and K2 are concordant and that W0 is a slice disk complement for K1#−

K2. We construct a tower of cobordisms for the zero-framed surgery MK1#−K2 . The

necessary J will be found via a satellite operation J = Rk(βk, J0) as in Theorem 4.1

where Rk is the ribbon knot of Figure 5.1. We let G be the satellite cobordism for

J = Rk(βk, J0). Define F1 and F2 to be the satellite cobordism for K1 = R(η1, J) and

K2 = R(η2, J) respectively. Since connected sum may be described as the satellite

K1#−K2 = K1(µ(K1),−K1), let E to be the satellite cobordism for K1#−K2.

∂G = MRk
*MJ0 *MJ (5.8)

∂F1 = MR *MJ *MK1 (5.9)

∂F2 = MR *MJ *MK2 (5.10)

∂E = MK1 *MK2 *MK1#−K2 (5.11)

∂V = MK1#−K2 (5.12)

Finally, define W to be be the union of W0, E, F1, F2, G and G along their common

boundary components as shown in Figure 5.2. Define W1 to be W0 ∪E and W2 to be
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W0

MK1#−K2

E

MK2MK1

F1

MJMR

F2

MJMR

G

MRk
MJ0

G

MRk
MJ0

Figure 5.2: This figure represents the cobordism W . The shaded region is the sub-

manifold W2.

W1∪F1∪F2. Then W is simply W2∪G∪G. In order to define the commutator series

π1(W )(n)x , let g be the image of η under the inclusion map π1(MR) → π1(W ), denoted

by η̃. To define the fourth term as in (5.5), let p2(t) be the Alexander polynomial of

J , ∆J(t) = ∆Rk
(t) = (k2 + k)t2 − (2k2 + 2k + 1)t+ (k2 + k). That is,

π1(W )(4)x = ker




π1(W )(3)x → π1(W )(3)x[
π1(W )(3)x , π1(W )(3)x

] ⊗Q[π1(W )/π1(W )(3)x ]S−1
3






where

S3 = {∆Rk
(η̃g)|g ∈ π1(W )/π1(W )(3)x }.

Note that ∆Rk
(t) is not a unit in Q[t, t−1] and ∆Rk

(tn) and ∆Rk
(tm) share no common

roots unless m = ±n (as in the proof of Theorem 4.1). Note that the commutator

series is functorial with respect to the inclusion π1(MR) → π1(W ) by Proposition 5.1.

Consider the coefficient system on W given by the projection

Φ : π1(W ) → π1(W )/π1(W )(4)x ≡ Λ4. (5.13)
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Since the von Neumann signature defect satisfies Novikov additivity, we have

σ(2)(W,Φ)− σ(W ) =
(
σ(2)(W0,Φ)− σ(W0)

)
+
(
σ(2)(E,Φ)− σ(E)

)

+
(
σ(2)(F1,Φ)− σ(F1)

)
+
(
σ(2)(F2,Φ)− σ(F2)

)

+
(
σ(2)(G,Φ)− σ(G)

)
+
(
σ(2)(G,Φ)− σ(G)

)
. (5.14)

Since W0 is a slice disk complement for K1#−K2, by Proposition 2.19 (6),

σ(2)(W0,Φ)− σ(W0) = 0.

All of the ordinary and twisted homology of the cobordisms E, F1, F2, G and G

comes from the boundary [CHL09, Lemma 2.4], and

σ(2)(X,Φ)− σ(X) = 0

for X = E,F1, F2, G and G. Since the von Neumann signature defect of W may be

computed by using the corresponding ρ-invariant of its boundary [CG85], we have

σ(2)(W,Φ)− σ(W ) = ρ(∂W,Φ|∂W ) = 0.

Since the ρ-invariant is additive, (5.14) reduces to

0 =ρ(MJ0 ,Φ|MJ0
) + ρ(MRk

,Φ|MRk
) + ρ(MR,Φ|MR)

+ ρ(MJ0 ,Φ|MJ0
) + ρ(MRk

,Φ|MRk
) + ρ(MR,Φ|MR

). (5.15)

In order to prove Theorem 5.2, it suffices to find a contradiction to (5.15). We do so

by proving the following claims.

Claim 5.4.

ρ(MJ0 ,Φ|MJ0
) = ρ0(J0).
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Claim 5.5.

ρ(MJ0 ,Φ|MJ0
) = 0.

Modulo the proofs of Claims 5.4 and 5.5, (5.15) reduces to

|ρ0(J0)| = ρ(MR,Φ|MR) + ρ(MRk
,Φ|MRk

) + ρ(MR,Φ|MR
) + ρ(MRk

,Φ|MRk
).

In order to obtain a contradiction, we need only choose J0 such that

|ρ0(J0)| > 2CR + 2CRk
.

Proof of Claim 5.4. In order to show ρ(MJ0 ,Φ|MJ0
) = ρ0(J0), we must show that the

restriction of Φ to π1(MJ0) factors nontrivially through abelianization. Since π1(MJ0)

is normally generated by µ(J0), it suffices to show that the inclusion of µ(J0) is

nontrivial in π1(W )(3)x /π1(W )(4)x . However, µ(J0) is identified with βk ∈ π1(MRk
)(1).

Similarly, the meridian of Rk is isotopic in W to µ(J) which normally generates

π1(MJ). Since µ(J) is identified with ηγ ∈ π1(MR)
(2)
x , we see that

π1(MJ0) ⊂ π1(MJ)
(1) ⊂ π1(MK1)

(3)
x ⊂ π1(W2)

(3)
x .

The kernel of π1(W2) → π1(W ) is generated by the longitudes of J0 and J0. Since

λ(J0) and λ(J0) are elements of π1(MJ0)
(2) and π1(MJ0)

(2) respectively, λ(J0) and

λ(J0) are represented by elements of π1(W )(4)x . By [CHL10, Proposition 4.17],

π1(W )

π1(W )(4)x

∼=
π1(W2)

π1(W2)
(4)
x

. (5.16)

We show π1(MJ0) is not mapped to π1(W )(4)x under inclusion in two steps. In the

first step which follows, we ensure that the element represented by the axis ηγ is not
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contained in π1(W2)(3). In the second step, we show βk is nontrivial as an element of

π1(W2)
(3)
x /π1(W2)

(4)
x .

Consider temporarily, the coefficient system induced on W by

Φ′ : π1(W ) → π1(W )

π1(W )(2)x

≡ Λ2. (5.17)

Note that Φ′|W2 also represents a coefficient system on W2 and we have the following

commutative diagram, which we justify below.

π1(MR)
(2)
x π1(W2)

(2)
x

π1(W2)
(2)
x

π1(W2)
(3)
x

π1(MR)
(2)
x

π1(MR)
(3)
x

H1(MR;QΛ2) H1(W2;QΛ2)
π1(W2)

(2)
x[

π1(W2)
(2)
x , π1(W2)

(2)
x

] ⊗Z Q

##

$$

##

$$

##

##

$$ $$
∼=

(5.18)

By definition, π1(W2)
(3)
x is the kernel of

π1(W2)
(2)
x → π1(W2)

(2)
x[

π1(W2)
(2)
x , π1(W2)

(2)
x

] ⊗Q,

and the vertical map on the right-handed side is a monomorphism. Since Λ2
∼=

π1(W2)/π1(W2)
(2)
x , it suffices to show the homology class represented by ηγ does not

lie in the kernel of the bottom row of the diagram. The first homology of W2 with

QΛ2-coefficients may be interpreted as the rational first homology of its Λ2-cover, W̃2,

which has π1(W̃2) = π1(W2)
(2)
x . Thus,

H1(W2;QΛ2) ∼= H1(W̃2;Q) ∼=
π1(W2)

(2)
x[

π1(W2)
(2)
x , π1(W2)

(2)
x

] ⊗Z Q.
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This validates that the second map in the bottom row of (5.18) is an isomorphism.

Note that ∂W2 = MR *MJ *MR *MJ . Since W0 is a slice disk complement, it is

also a (3, x)-solution for K1#−K2. Furthermore, we’ve already noted that

H2(E;Z)
H2(∂E;Z)

∼=
H2(F1;Z)
H2(∂F1;Z)

∼=
H2(F2;Z)
H2(∂F2;Z)

∼= 0,

and hence W2 satisfies the definitions to be (3, x)-bordism for ∂W2 [CHL10, Definition

7.11] (as discussed in the proof of Lemma 4.8). Let P be the kernel of the map

H1(∂W2;QΛ2) → H1(W2;QΛ2).

By [COT03, Theorem 2.13] there exists a symmetric linking form on H1(∂W2;QΛ2)

which we denote by B'QΛ2
∂W2

, and this form decomposes under the disjoint union ∂W2 =

MR * MJ * MR * MJ . Then P must be an isotropic submodule of H1(∂W2;QΛ2)

with respect to B'QΛ2
∂W2

by [CHL10, Theorem 7.15]. It suffices to show that

B'QΛ2
R (ηγ, ηγ) 3= 0.

Recall that Γ2 ≡ π1(MR)/π1(MR)
(2)
x , and consider the kernel of the map

Γ2
φ−→ π1(W2)

π1(W2)
(2)
x

.

Note that π1(MR)/π1(MR)(1) is generated by µ(R) which is isotopic in W2 to the

meridian of K1#−K2). Since

〈µ(K1#−K2)〉 ∼= H1(MK1#−K2)
∼=−→ H1(W0) ∼= H1(W2),

kerφ ⊂ π1(MR)(1)/π1(MR)
(2)
x and is equal to the kernel of

π1(MR)(1)

π1(MR)
(2)
x

φ−→ π1(W2)(1)

π1(W2)
(2)
x

.
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Note that W2 is a (3, x)-bordism for ∂W2, and when viewed as Q[t, t−1]S−1
1 -modules,

this kernel P̃ is isotropic with respect to the localized Blanchfield form. Let P ⊂

π1(MR)(1)/π1(MR)
(2)
x denote the normal subgroup of Γ2 which is mapped to P̃ . This

yields a monomorphism,

Γ2/P = ΓP
2

ψ
↪→ π1(W2)

,
π1(W2)

(2)
x .

which gives rise to the following ring and module homomorphisms respectively.

ψ : QΓP
2 ↪→ Q

[
π1(W2)

π1(W2)
(2)
x

]
∼= QΛ2 Ψ : KΓP

2 → KΛ2

ψ∗ : H1(MR;QΓP
2 ) → H1(MR;QΛ2) Ψ : KΓP

2 /QΓP
2 → KΛ2/QΛ2

By hypothesis, B'QΓP
2

R (ηγ, ηγ) 3= 0 for any P # π1(MR)(1)/π1(MR)
(2)
x mapping to an

isotropic submodule of H1(MR;Q[t, t−1]S−1
1 ). We wish to show that B'QΛ2

R (ηγ, ηγ) 3=

0 where B'QΛ2
R is the Blanchfield linking form on the QΛ2-module H1(MR;QΛ2). We

employ the following proposition.

Proposition 5.6. Suppose f : A → B is a monomorphism between poly-(torsion-free

abelian) groups and that f induces the ring and module homomorphisms f : QA ↪→

QB and f∗ : H1(MK ;QA) → H1(MK ;QB) respectively. Then if x, y ∈ H1(MK ;QA),

we have

f
(
B'QA

K (x, y)
)
= B'QB

K (f∗(x), f∗(y)).

where f is the induced ring homomorphism f : KA/QA → KB/QB.

Proof. Recall that the Blanchfield form B'QA
K is given by the composition of the
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following maps,

H1(MK ;QA)
P.D.−−→ H2(MK ;QA)

B−1

−−→ H1(MK ;KA/QA)

κ−→ HomQA(H1(MK ;QA);KA/QA),

where x 1→ B'QA
K (x,−). Here, P.D. refers to the Poincaré Dualitity isomorphism, B−1

is the inverse of the Bochstein homomorphism, and κ is the Kronecker evaluation map.

Note that sinceQA is not necessarily a principal ideal domain, κ is not an isomoprhism

and B'QA
K may be singular. Consider the following commutative diagram induced by

f .

H1(MK ;QA) H1(MK ;QB)

H2(MK ;QA) H2(MK ;QB)

H1(MK ;KA/QA) H1(MK ;KB/QB)

HomQA(H1(MK ;QA);KA/QA) HomQB(H1(MK ;QB);KB/QB)

HomQA(H1(MK ;QA);KB/QB)

$$
f∗

##

P.D.

##

P.D

$$
f∗

##

B−1

##

B−1

##

κ

$$
f∗

##

κ

##

f

%%

f∗

(5.19)

Since the diagram commutes, we have f ∗ ◦ B'QB
K ◦ f∗ = f ◦ B'QA

K where

(
f ∗ ◦ B'QB

K ◦ f∗(x)
)
(y) =

(
B'QB

K ◦ f∗(x)
)
(f∗(y)) = B'QB

K (f∗(x), f∗(y)).
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Proposition 5.6 implies that B'QΛ2
R = Ψ(B'QΓP

2
R ). We must show that the value of

B'QΓP
2

R (ηγ, ηγ) is not in the kernel of Ψ.

Proposition 5.7. Suppose A is a subgroup of the poly-(torsion-free abelian) group

B. The ring monomorphism f : KA ↪→ KB induced by the embedding A ↪→ B yields

a ring monomorphism on the quotient

f : KA/QA ↪→ KB/QB.

Proof. Since KA embeds as a subring of KB, it suffices to show that

KA ∩QB = QA.

Since A < B, fix a set of left coset representatives {bi ∈ B} such that b0 is the identity

of B. Then QB is free as a right QA-module on the set of left cosets of A. Suppose

there exist r, s ∈ QA, where s 3= 0 , t ∈ QB, and such that rs−1 = t. Since t may be

written uniquely as the sum

t =
∑

i

biai

where ai ∈ QA, the equation rs−1 may be rewritten as

r =

(
∑

i

biai

)
s =

∑

i

bi(ais).

Since r ∈ QA, it must be that
∑

i bi(ais) ∈ QA as well. Hence ais = 0 implying

ai = 0 for each i 3= 0 since QA is a domain. Then t = b0a ∈ QA.

Proposition 5.7 implies Ψ is a ring monomorphism, and Ψ(B'QΓP
2

R (ηγ, ηγ)) 3= 0

as desired. Hence ηγ represents a nontrivial element of π1(W )(2)x /π1(W )(3)x and µ(J)

does as well, concluding the first step of the proof of Claim 5.4.
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For the second step, we ensure that βk is represented by a nontrivial element of

π1(W2)
(3)
x /π1(W2)

(4)
x . For this, we make use of the following commutative diagram.

π1(MJ)
(1) π1(W2)

(3)
x

π1(W2)
(3)
x

π1(W2)
(4)
x

A(J)⊗Q3

H1(MJ ;Q3) H1(W2;Q3)
π1(W2)

(3)
x[

π1(W2)
(3)
x , π1(W2)

(3)
x

] ⊗Q3

$$

##

$$

##

##

##

∼=

$$ $$
∼=

(5.20)

Here we denote Λ3 ≡ π1(W )/π1(W )(3)x
∼= π1(W2)/π1(W2)

(3)
x (5.16) and Q3 ≡ QΛ3S

−1
3 .

The justification of this diagram follows that of (4.3). Since βk generates the rational

Alexander module of Rk, and A(Rk) ∼= A(J), βk ⊗ 1 is the generator of H1(MJ ;Q3).

We must show that βk ⊗ 1 is not in the kernel of the bottom row of (5.20).

By the same arguments as before, W2 may also be viewed as a (4, x)-bordism for

∂W2 = MR*MJ*MR*MJ . If βk⊗1 ∈ ker{H1(MJ ;Q3) → H1(W2;Q3)}, this implies

B'Q3
J (βk ⊗ 1, βk ⊗ 1) = 0. Since π1(MJ) → Λ3 factors through Z, B'Q3

J is nonsingular

by [CHL10, Lemma 7.16], and it must be that H1(MJ ;Q3) = 0. We show

A(J)⊗Q3
∼=

(
QΓ3

∆Rk
(ηγ)QΓ3

)
S−1
3 3= 0.

By hypothesis, AZ(Rk) is nontrivial and ∆Rk
(t) is not a unit in Q[t, t−1]. The

map t 1→ ηγ is nontrivial since we showed in the first step of the proof that ηγ 3= 0

in π1(W2)
(2)
x /π1(W2)

(3)
x . Since Λ3

∼= π1(W2)/π1(W2)
(3)
x is torsion-free, QΛ3 is a free

left Q[ηγ, (ηγ)−1]-module on the set of right cosets of 〈ηγ〉 ⊂ Λ3. Fix a set of coset
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representatives such that any x ∈ QΛ3 has a uniqe decomposition as

x =
∑

ξ

xξξ

where xξ ∈ Q[ηγ, (ηγ)−1] and each ξ is a coset representiative in Γ3. If ∆Rk
(ηγ) has

a right inverse in QΓ3, then there exists some x ∈ QΓ3 such that ∆Rk
(ηγ)x = 1

implying

∆Rk
(ηγ)x = ∆Rk

(ηγ)
∑

ξ

xξξ =
∑

∆Rk
(ηγ)xξξ = 1.

Then on the coset ξ = e, we have ∆Rk
(ηγ)xe = 1 in Q[ηγ, (ηγ)−1] contradicting the

fact that ∆Rk
(t) is not a unit in Q[t, t−1]. Since Λ3 is poly-(torsion-free abelian), QΛ3

is a domain and

QΛ3

∆Rk
(ηγ)QΛ3

3= 0.

The kernel of

QΛ3

∆Rk
(ηγ)QΛ3

→
(

QΛ3

∆Rk
(ηγ)QΛ3

)
S−1
3

is simply the S3-torsion submodule, and hence we must show that the generator of

QΛ3/∆Rk
(ηγ)QΛ3 is not S3-torsion. Denote this generator by 1. If it is S3-torsion,

there must be some s ∈ S3 and y ∈ QΛ3 such that 1s = ∆Rk
(ηγ)y.

Let A3 = π1(W2)
(2)
x /π1(W2)

(3)
x which is normal in Λ3. We now view QΛ3 as a free

left QA3-module on the set of right cosets of A3 in Λ3 where each y ∈ QΛ3 now has

a unique decomposition as

y =
∑

ξ

yξξ

where yξ ∈ QA3 and each ξ is a coset representative in Λ3. Then

s = ∆Rk
(ηγ)

∑

ξ

yξξ =
∑

ξ

∆Rk
(ηγ)yξξ.
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Since s ∈ S3 ⊂ QA3 and ∆R(ηγ) ∈ QA3, each coset representative ξ 3= e gives

0 = ∆Rk
(ηγ)yξ, but Q[ηγ, (ηγ)−1] ⊂ QΛ3 and ∆Rk

(ηγ) is nonzero in Q[ηγ, (ηγ)−1]

since ∆Rk
(t) is nonzero in Q[t, t−1]. Thus, yξ = 0 for each ξ 3= e. Hence y ∈ QA3 and

the equation s = ∆Rk
(ηγ)y is one in QA3. By definition, each element of S3 may be

written as a product of terms of the form ∆Rk
(η̃g) where η̃g = g−1η̃g for some g ∈ Λ3

and so ∆Rk
(ηγ) must divide a product of terms of the form ∆Rk

(η̃gi).

Since A3 is torsion-free abelian, we may view s = ∆Rk
(ηγ)y as an equation in

QF where F ⊂ A3 is a free abelian group of finite rank. Then QF is a unique

factorization domain. Choose some basis {x1, x2, . . . , xr} of F such that ηγ = xm
1 for

some m ∈ Z+. Then η̃gi = g−1
i η̃gi = x

ni,1

1 x
ni,2

2 · · · xni,r
r , and QF may be viewed as a

Laurent polynomial ring in the variables {x1, . . . , xr}. There must exist some nonzero

complex root ζ of ∆Rk
(xm

1 ). Let f̃(x1) be an irreducible factor of ∆Rk
(xm

1 ) of which

ζ is a root. Then for some i, f̃(x1) must divide ∆Rk
(x

ni,1

1 , x
ni,2

2 , . . . , x
ni,r
r ). For every

value of ni,k with 1 < k ≤ r, ζ must be a root of ∆Rk
(x

ni,1

1 , x
ni,2

2 , . . . , x
ni,r
r ), and so

each ni,k = 0 for k = 2, . . . , r. Then we have η̃gi = xn
1 for some n 3= 0. Recall that

∆Rk
(t) = (k2 + k)t2 − (2k2 + 2k + 1)t+ (k2 + k),

and (∆Rk
(tn),∆Rk

(tm)) = 1 whenever n 3= ±m. Hence

η̃gi = (ηγ)±1 (5.21)

for some gi ∈ Λ3. Since η̃ and ηγ originate as circles in ∂W2, η̃gi and ηγ represent

elements of H1(∂W2;QΛ2) where their difference can be written as η̃gi ± ηγ. Then

(5.21) implies that this difference lies in the kernel of

H1(∂W2;QΛ2) → H1(W2;QΛ2), (5.22)
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and it must be that

B'QΛ2
∂W2

(η̃gi ∓ ηγ, η̃gi ∓ ηγ) = 0.

In order to provide a contradiction, we must show that η̃gi ∓ ηγ does not lie in an

isotropic submodule of H1(∂W2,QΛ2). Note that since ∂W2 = MR *MR *MJ *MJ ,

its twisted first homology decomposes as

H1(∂W2;QΛ2) ∼= H1(MR;QΛ2)⊕H1(MR;QΛ2)⊕H1(MJ ;QΛ2)⊕H1(MJ ;QΛ2),

and the action of Λ2 is invariant on these summands.

Recall by hypothesis B'QΓP
2

R (ηγ, ηγ) 3= B'QΓP
2

R (η, η). This implies B'QΛ2
R (ηγ, ηγ) 3=

B'QΛ2
R (η, η) since KΓP

2 /QΓP
2 ↪→ KΛ2/QΛ2 by Proposition 5.7. Recall that η̃ originates

as a circle in MR and ηγ by an circle in MR. Since B'QΛ2
−R is a symmetric linking form,

B'QΛ2 : H1(MR;QΛ2) → Hom(H1(MR;QΛ2);KΛ2/QΛ2)

where Hom(H1(MR;QΛ2);KΛ2/QΛ2) denotes the right QΛ2-module resulting from

involution of QΛ2 and the left QΛ2-module Hom(H1(MR;QΛ2);KΛ2/QΛ2). Hence,

if g ∈ Λ2 ⊂ QΛ2, we have

B'QΛ2
−R (α · g, β · g) = B'QΛ2

−R (α, β)gg = B'QΛ2
R (α, β).

An easy calculation then yields the following, where gi denotes the image of gi ∈ Λ3
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in Λ2 ⊂ QΛ2.

B'QΛ2
∂W2

(η̃gi ∓ ηγ, η̃gi ∓ ηγ) = B'QΛ2
−R (η̃gi , η̃gi) + B'QΛ2

−R (ηγ, ηγ)

= B'QΛ2
−R (η̃ · gi, η̃ · gi) + B'QΛ2

R (ηγ, ηγ)

= B'QΛ2
−R (η̃, η̃) + B'QΛ2

R (ηγ, ηγ)

= −B'QΛ2
R (η, η) + B'QΛ2

R (ηγ, ηγ)

3= 0

This contradicts the assumption that the generator of QΛ3/∆Rk
(ηγ)QΛ3 is S3-

torsion. Hence H1(MJ ;Q3) is nontrivial and βk ⊗ 1 does not lie in the kernel of

the bottom row of (5.20). This further implies that µ(J0) must be nontrivial as an

element of π1(W )(3)x /π1(W )(4)x and the restriction of Φ to π1(MJ0) factors nontrivially

through abelianization. This completes the proof of Claim 5.4.

The final component of the proof of Theorem 5.2 is the proof of Claim 5.5.

Proof of Claim 5.5. In order to show ρ(MJ0 ,Φ|MJ0
) = 0, we show that the restriction

of Φ to π1(MJ0) is trivial. This argument is similar to the beginning of the proof

of Claim 5.4. Here, π1(MJ0) is normally generated by the meridian, µ(J0) which is

identified with βk ∈ π1(MRk
)(1). The meridian of −Rk is isotopic in W to µ(J) which

normally generates π1(MJ) and is identified with η̃ ∈ π1(MR)
(2)
x . Hence,

π1(MJ0) ⊂ π1(MJ)
(1) ⊂ π1(MK2)

(3)
x ⊂ π1(W )(3)x .

If η̃ ∈ π1(W )(3)x , then we are done. Otherwise, suppose η̃ is nontrivial in

π1(W )(2)x /π1(W )(3)x . We will show that βk is trivial in π1(W2)
(3)
x /π1(W2)

(4)
x . We have
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the following commutative diagram, similar to 5.20.

π1(MJ)
(1) π1(W2)

(3)
x

π1(W2)
(3)
x

π1(W2)
(4)
x

A(−J)⊗Q3

H1(MJ ;Q3) H1(W2;Q3)
π1(W2)

(3)
x[

π1(W2)
(3)
x , π1(W2)

(3)
x

] ⊗Q3

$$

##

$$

##

##

##

∼=

$$ $$
∼=

(5.23)

Since βk generates the rational Alexander module of −Rk and A(Rk) ∼= A(J), βk ⊗ 1

is the generator of H1(MJ ;Q3). However,

A(J)⊗Q3
∼=

(
QΛ3

∆Rk
(η̃)QΛ3

)
S−1
3 , (5.24)

and the generator is ∆Rk
(η̃)-torsion and ∆Rk

(η̃) ∈ S3 by definition. This implies

H1(MJ ;Q3) = 0 and βk is in the kernel of the top row of the diagram. Since µ(J0)

is identified with βk, we have µ(J0) is represented by an element of π1(W )(4)x and the

restriction of Φ to π1(MJ0) is trivial.

This concludes the proof of Theorem 5.2.

5.1 A Higher-Order Example

In this section, we give an example which illustrates the power of Theorem 5.2. Recall

Rk is the ribbon knot shown in Figure 5.3 where the k in the box denotes k negative

full twists and βk generates the rational Alexander module of Rk. The Alexander

polynomial of Rk is ∆k = (k2 + k)t2 − (2k2 + 2k + 1)t+ (k2 + k). We take R to the
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k

βk

Figure 5.3: The ribbon knot Rk and infecting curve βk.

ribbon knot R# of Figure 5.4, which may be described as the result of the following

infections.

R# = R2(β2, R1)#R3 (5.25)

The classical rational Alexander module of R# is given by

AQ(R#) ∼= AQ(R2(β2, R1))⊕AQ(R3) ∼= AQ(R2)⊕AQ(R3)

and hence the Alexander polynomial is (6t2 − 13t+ 6)(12t2 − 25t+ 12). Let η be the

image of β3 ⊂ S3 \ R3 in MR#
. Note that the order of η in AQ(R#) is ∆3(t). We

define the first few terms of the commutator series from the proof of Theorem 5.2 as

follows for groups with β1(G) = 1.

G(1)
x = G(1)

r (5.26)

G(2)
x = ker




G(1)
x → G(1)

x[
G(1)

x , G(1)
x

] ⊗Q[t, t−1]〈∆3(t)〉−1




 (5.27)

G(3)
x = ker




G(2)
x → G(2)

x[
G(2)

x , G(2)
x

] ⊗Q[G/G(2)
x ]




 (5.28)
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Figure 5.4: The ribbon knot R# = R2(β2, R1)#R3

Denote Q[t, t−1]〈∆3(t)〉−1 by Q1. Note that the kernel of

π1(MR#
)(1)

π1(MR#
)(2)

⊗Q[t, t−1] →
π1(MR#

)(1)

π1(MR#
)(2)

⊗Q1

is the ∆3(t)-torsion submodule of AQ(R#). Hence,

H1(MR#
;Q1) ∼= H1(MR2(β2,R1);Q1)⊕H1(MR3 ;Q1) ∼= H1(MR2 ;Q1) ∼= AQ(R2)⊗Q1,

and isotropic submodules of H1(MR#
;Q1) with respect to the localized Blanchfield

form correspond to isotropic submodules of AQ(R2)⊗Q1.

Let Γ2 = π1(MR#
)/π1(MR#

)(2)x and KΓ2 be the field of fractions of QΓ2.

In order to provide an example of Theorem 5.2, we must provide a γ ∈ π1(MR#
)(2)

such that

B'QΓP
2 (η, η) 3= B'QΓP

2 (ηγ, ηγ)
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for any subgroup P of π1(MR#
)(1)/π1(MR#

)(2)x ⊂ Γ2 which maps to an isotropic

submodule of H1(MR#
;Q1) with respect to the localized classical Blanchfield form.

Let j : π1(MR1) → π1(MR#
) be the map induced by inclusion. Then since µ(R1)

is identified with β2 which represents a nontrivial element of π1(MR2#R3)
(1), we have

j (π1(MR1)) ⊂ π1(MR#
)(1).

By an abuse of notation, let j also represent be the map given by taking the quotient

j :
π1(MR1)

π1(MR1)(1)
→

π1(MR#
)(1)

π1(MR#
)(2)x

→
π1(MR#

)

π1(MR#
)(2)x

.

Fixing any subgroup P of π1(MR#
)(1)/π1(MR)

(2)
x ⊂ Γ2 which maps to an isotropic

submodule with respect to the localized classical Blanchfield form on H1(MR#
;Q1),

define the ring homomorphism

ψ : Q[t, t−1]
j−→ QΓ2 $ QΓP

2

given by t 1→ β2. Note that β2 generates the rational Alexander module of R2 and

hence β2⊗ 1 is a generator of AQ(R2)⊗Q1. Since Q1 is a principal ideal domain, the

following composition is an isomorphism

AQ(R2)⊗Q1
∼= H1(MR2 ;Q1)

P.D.−→∼= H2(MR2 ;Q1)

B−1

−→∼= H1(MR2 ;Q(t)/Q1)

κ−→∼= Hom(H1(MR1 ;Q1);Q(t)/Q1),

and the localized Blanchfield form is nonsingular on AQ(R2) ⊗Q1. Since AQ(R2) is

not ∆3(t)-torsion, AQ(R2)⊗Q1 3∼= 0 and B'Q1
R2
(β2⊗1, β2⊗1) 3= 0. This implies β2⊗1

is not a member of any isotropic submodule of AQ(R2)⊗Q1
∼= H1(MR#

;Q1). Hence,
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β2 is represented by a nontrivial element of QΓP
2 , and ψ is a monomorphism. By

Proposition 5.7, ψ induces the ring monomorphisms

ψ′ : Q(t) ↪→ K2, and

ψ : Q(t)/Q[t, t−1] ↪→ KΓP
2 /QΓP

2 .

By Proposition 5.6, we have

B'QΓP
2

R1
(ψ∗(β1),ψ∗(β1)) = ψ

(
B'QR1

(β1, β1)
)
3= 0.

where ψ∗ : H1(MR1 ;Q[t, t−1]) → H1(MR1 ;QΓP
2 ). Suppose

i : H1(MR2#R3 ,QΓP
2 ) → H1(MR#

,QΓP
2 ), and

j : H1(MR1 ,QΓP
2 ) → H1(MR#

,QΓP
2 ).

By Theorem 2.16, the linking form

B'QΓP
2

R#
: H1(MR#

;QΓP
2 )×H1(MR#

;QΓP
2 ) → KΓP

2 /QΓP
2

is given by the formula

B'QΓP
2

R#
(i(x1) + j(y1), i(x2) + j(y2)) = B'QΓP

2
R2#R3

(x2, y2) + ψ
(
B'QR1

(y1, y2)
)
. (5.29)

Suppose γ is the image of β1 ⊂ S3 \R1. Since β1 generates the rational Alexander

module of R1, we have B'R1(β1, β1) 3= 0. Thus

B'QΓP
2

R#
(ηγ, ηγ) =B'QΓP

2
R#

(i(η) + j(γ), i(η) + j(γ))

=B'QΓP
2

R2#R3
(η, η) + ψ

(
B'QR1

(γ, γ)
)

3=B'QΓP
2

R#
(η, η).
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This example allows us to generalize the choice of η and γ to provide an infinite

family of infecting curves ηi which are equivalent in the classical Alexander module

AZ(R#) but which provide distinct concordance classes of knots R#(ηi, J) when J is

chosen as in the proof of Theorem 5.2.

Corollary 5.8. Let R# = R2(β2, R1)#R3, There exists an infinite family of infecting

curves ηi which are equivalent in AZ(R#) such that each R#(ηi,−) is a distinct map

on C.

Proof. For i ∈ Z≥0, let ηi = ηγi where η be the image of β3 under the inclusion

S3 \ R3 → MR#
and γ be the image of β1 under the inclusion S3 \ R1 → MR#

. As

an element of H1(MR#
;QΓP

2 ), ηi may be written as η + iγ, and

B'QΓP
2

R#
(ηi, ηi) = i2ψ (B'R1(β1, β1)) + B'QΓP

2
R2#R3

(η, η).

Hence B'QΓP
2 (ηi, ηi) = B'QΓP

2 (ηj, ηj) if and only if i2 = j2. It suffices to find a knot J

such that R#(ηi, J) is not concordant to R#(ηj, J) for i 3= j. Choose J = Rk(βk, J0)

such that

|ρ0(J0)| ≥ 2CR#
+ 2CRk

.
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