Structure, Dynamics, and Specificity of Endoglucanase D from Clostridium cellulovorans

dc.citation.firstpage4267
dc.citation.issueNumber22
dc.citation.journalTitleJournal of Molecular Biology
dc.citation.lastpage4285
dc.citation.volumeNumber425
dc.contributor.authorBianchetti, Christopher M.
dc.contributor.authorBrumm, Phillip
dc.contributor.authorSmith, Robert W.
dc.contributor.authorDyer, Kevin
dc.contributor.authorHura, Greg L.
dc.contributor.authorRutkoski, Thomas J.
dc.contributor.authorPhillips, George N.Jr.
dc.date.accessioned2017-08-04T12:30:01Z
dc.date.available2017-08-04T12:30:01Z
dc.date.issued2013
dc.description.abstractThe enzymatic degradation of cellulose is a critical step in the biological conversion of plant biomass into an abundant renewable energy source. An understanding of the structural and dynamic features that cellulases utilize to bind a single strand of crystalline cellulose and hydrolyze the β-1,4-glycosidic bonds of cellulose to produce fermentable sugars would greatly facilitate the engineering of improved cellulases for the large-scale conversion of plant biomass. Endoglucanase D (EngD) from Clostridium cellulovorans is a modular enzyme comprising an N-terminal catalytic domain and a C-terminal carbohydrate-binding module, which is attached via a flexible linker. Here, we present the 2.1-Å-resolution crystal structures of full-length EngD with and without cellotriose bound, solution small-angle X-ray scattering (SAXS) studies of the full-length enzyme, the characterization of the active cleft glucose binding subsites, and substrate specificity of EngD on soluble and insoluble polymeric carbohydrates. SAXS data support a model in which the linker is flexible, allowing EngD to adopt an extended conformation in solution. The cellotriose-bound EngD structure revealed an extended active-site cleft that contains seven glucose-binding subsites, but unlike the majority of structurally determined endocellulases, the active-site cleft of EngD is partially enclosed by Trp162 and Tyr232. EngD variants, which lack Trp162, showed a significant reduction in activity and an alteration in the distribution of cellohexaose degradation products, suggesting that Trp162 plays a direct role in substrate binding.
dc.identifier.citationBianchetti, Christopher M., Brumm, Phillip, Smith, Robert W., et al.. "Structure, Dynamics, and Specificity of Endoglucanase D from Clostridium cellulovorans." <i>Journal of Molecular Biology,</i> 425, no. 22 (2013) Elsevier: 4267-4285. https://doi.org/10.1016/j.jmb.2013.05.030.
dc.identifier.digitalStructure_Dynamics_Specificity
dc.identifier.doihttps://doi.org/10.1016/j.jmb.2013.05.030
dc.identifier.urihttps://hdl.handle.net/1911/96591
dc.language.isoeng
dc.publisherElsevier
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier.
dc.subject.keywordCBM
dc.subject.keywordEngD
dc.subject.keywordGH
dc.subject.keywordPDB
dc.subject.keywordPT
dc.subject.keywordProtein Data Bank
dc.subject.keywordSAXS
dc.subject.keywordX-ray crystallography
dc.subject.keywordcarbohydrate-binding module
dc.subject.keywordcellulase
dc.subject.keywordcellulose degradation
dc.subject.keywordendoglucanase
dc.subject.keywordendoglucanase D
dc.subject.keywordglycosyl hydrolase
dc.subject.keywordproline/threonine-rich
dc.subject.keywordsmall-angle X-ray scattering
dc.titleStructure, Dynamics, and Specificity of Endoglucanase D from Clostridium cellulovorans
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpost-print
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dynamics_Specificity.pdf
Size:
4.73 MB
Format:
Adobe Portable Document Format