Robust Multiple Regression

dc.citation.articleNumber88en_US
dc.citation.issueNumber1en_US
dc.citation.journalTitleEntropyen_US
dc.citation.volumeNumber23en_US
dc.contributor.authorScott, David W.en_US
dc.contributor.authorWang, Zhipengen_US
dc.date.accessioned2021-02-24T19:15:50Zen_US
dc.date.available2021-02-24T19:15:50Zen_US
dc.date.issued2021en_US
dc.description.abstractAs modern data analysis pushes the boundaries of classical statistics, it is timely to reexamine alternate approaches to dealing with outliers in multiple regression. As sample sizes and the number of predictors increase, interactive methodology becomes less effective. Likewise, with limited understanding of the underlying contamination process, diagnostics are likely to fail as well. In this article, we advocate for a non-likelihood procedure that attempts to quantify the fraction of bad data as a part of the estimation step. These ideas also allow for the selection of important predictors under some assumptions. As there are many robust algorithms available, running several and looking for interesting differences is a sensible strategy for understanding the nature of the outliers.en_US
dc.identifier.citationScott, David W. and Wang, Zhipeng. "Robust Multiple Regression." <i>Entropy,</i> 23, no. 1 (2021) MDPI: https://doi.org/10.3390/e23010088.en_US
dc.identifier.digitalentropy-23-00088-v2en_US
dc.identifier.doihttps://doi.org/10.3390/e23010088en_US
dc.identifier.urihttps://hdl.handle.net/1911/110092en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsThis is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citeden_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subject.keywordminimum distance estimationen_US
dc.subject.keywordmaximum likelihood estimationen_US
dc.subject.keywordinfluence functionsen_US
dc.titleRobust Multiple Regressionen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
entropy-23-00088-v2.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format