Syzygies for translational surfaces

dc.citation.firstpage73en_US
dc.citation.journalTitleJournal of Symbolic Computationen_US
dc.citation.lastpage93en_US
dc.citation.volumeNumber89en_US
dc.contributor.authorWang, Haohaoen_US
dc.contributor.authorGoldman, Ronen_US
dc.date.accessioned2018-10-31T18:20:47Zen_US
dc.date.available2018-10-31T18:20:47Zen_US
dc.date.issued2018en_US
dc.description.abstractA translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms.en_US
dc.identifier.citationWang, Haohao and Goldman, Ron. "Syzygies for translational surfaces." <i>Journal of Symbolic Computation,</i> 89, (2018) Elsevier: 73-93. https://doi.org/10.1016/j.jsc.2017.11.004.en_US
dc.identifier.doihttps://doi.org/10.1016/j.jsc.2017.11.004en_US
dc.identifier.urihttps://hdl.handle.net/1911/103240en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier.en_US
dc.subject.keywordTranslational surfaceen_US
dc.subject.keywordSyzygyen_US
dc.subject.keywordμ-basisen_US
dc.subject.keywordImplicit equationen_US
dc.titleSyzygies for translational surfacesen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
yjsco1816.pdf
Size:
330.17 KB
Format:
Adobe Portable Document Format
Description: