Adaptive Finite Element Methods for Linear-Quadratic Convection Dominated Elliptic Optimal Control Problems

Date
2009-08
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

The numerical solution of linear-quadratic elliptic optimal control problems requires the solution of a coupled system of elliptic partial differential equations (PDEs), consisting of the so-called state PDE, the adjoint PDE and an algebraic equation. Adaptive finite element methods (AFEMs) attempt to locally refine a base mesh in such a way that the solution error is minimized for a given discretization size. This is particularly important for the solution of convection dominated problems where inner and boundary layers in the solutions to the PDEs need to be sufficiently resolved to ensure that the solution of the discretized optimal control problem is a good approximation of the true solution. This thesis reviews several AFEMs based on energy norm based error estimates for single convection dominated PDEs and extends them to the solution of the coupled system of convection dominated PDEs arising from the optimality conditions for optimal control problems.

Description
This work was also published as a Rice University thesis/dissertation: http://hdl.handle.net/1911/61980
Advisor
Degree
Type
Technical report
Keywords
Citation

Nederkoorn, Eelco. "Adaptive Finite Element Methods for Linear-Quadratic Convection Dominated Elliptic Optimal Control Problems." (2009) https://hdl.handle.net/1911/102129.

Has part(s)
Forms part of
Published Version
Rights
Link to license
Citable link to this page