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Abstract

Adaptive finite element methods for

linear-quadratic convection dominated elliptic

optimal control problems

by

Eelco Nederkoorn

The numerical solution of linear-quadratic elliptic optimal control problems re-

quires the solution of a coupled system of elliptic partial differential equations (PDEs),

consisting of the so-called state PDE, the adjoint PDE and an algebraic equation.

Adaptive finite element methods (AFEMs) attempt to locally refine a base mesh in

such a way that the solution error is minimized for a given discretization size. This

is particularly important for the solution of convection dominated problems where

inner and boundary layers in the solutions to the PDEs need to be sufficiently re-

solved to ensure that the solution of the discretized optimal control problem is a good

approximation of the true solution.

This thesis reviews several AFEMs based on energy norm based error estimates for

single convection dominated PDEs and extends them to the solution of the coupled



iii

system of convection dominated PDEs arising from the optimality conditions for

optimal control problems.

Keywords Adaptive finite element methods, optimal control problems, convection-

diffusion equations, local refinement, error estimation.
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Chapter 1

Introduction

This thesis analyzes and compares different adaptive finite element methods (AFEMs)

for linear-quadratic convection dominated elliptic optimal control problems of the

form

min
1

2
‖y − ŷ‖2

L2(Ω) +
ω

2
‖u‖2

L2(Ω) (1.1a)

subject to

−ε∆y + b · ∇y + cy = f + u in Ω, (1.1b)

y = gD on ΓD, (1.1c)

ε
∂y

∂n
= gN on ΓN , (1.1d)

where the boundary of Ω ⊂ R2 is divided such that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅

(note that ΓD and ΓN are respectively the Dirichlet and Neumann boundary). Assume

that the constants ε > 0, ω > 0 and the functions b : R2 → R2, c : R2 → R,

f : R2 → R, gD : R2 → R, gN : R2 → R and ŷ : R2 → R are sufficiently smooth.

1
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This thesis first reviews AFEMs for the uncontrolled problem, i.e. the convection-

diffusion equation (1.1b) - (1.1d) with u ≡ 0. In the second part of his thesis the theory

of AFEMs for the single convection-diffusion equation (1.1b) - (1.1d) is extended to

the optimal control problem (1.1).

For the single equation case, this thesis focuses on the convection dominated

problems, i.e. ε� ‖b‖∞. Solutions to such convection dominated diffusion equations

typically have localized features. These so-called layers, local regions with steep

gradients, tend to get steeper when ε gets smaller. In general these layers occur at

the ‘outflow’ boundary {x ∈ ∂Ω : b(x) · n(x) > 0} (so-called boundary layers) or in

the interior of Ω (inner layers) ([32], [33]). Boundary layers arise because the interior

solution, driven by strong convection, suddenly has to match the Dirichlet boundary

conditions at the outflow boundary. Inner layers typically stem from a discontinuity at

the inflow boundary data. Despite this discontinuity at the boundary, the solution is

continuous in the interior because of the, albeit small, diffusive nature of the problem.

However, due to the dominating convection, such discontinuities at the boundary

cause a sharp gradient in a small band throughout the interior of Ω.

Standard Galerkin finite element (FEM) approximations produce oscillatory so-

lutions unless the mesh size is small relative to ε/‖b‖∞. Since ε/‖b‖∞ is very small

in the problems of interest, the standard Galerkin FEM has to be modified to com-

pute ‘good’ approximate solutions at moderate mesh sizes. This thesis considers the

streamline upwind / Petrov-Galerkin (SUPG) method of Brooks and Hughes ([18],
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[19]) . This thesis numerically shows that even though this stabilization method sig-

nificantly improves the numerical solution, this solution may still contain oscillations

in cross wind direction in a small region around the layers. The errors caused by these

oscillations may be propagated downwind by the convection flow into the interior of

Ω. Hence, even the stabilized variational problem needs to resolve the layers in order

to achieve satisfying results.

Uniform meshes with sufficiently small elements tend to get impractically large.

This gives rise to the idea of using locally refined meshes around the layers. Adaptive

finite element methods (AFEMs) generate such locally refined meshes. A typical

AFEM computes a numerical solution on a triangulation, estimates the local error

on each single element, marks a selection of the elements and refines the selection.

This iteration is repeated until a desired accuracy or a maximum number of nodes is

reached.

Key in the adaptive process is estimating the error of a computed numerical so-

lution. This thesis reviews and numerically compares three existing classes of error

indicators: the Zienkiewicz-Zhu estimator ([7], [39]), the norm-residual based estima-

tor and the local Neumann estimator ([23], [34], [35], [36], [37]). The results clearly

indicate that choosing an error estimator is highly problem dependent, which coin-

cides with existing numerical studies ([20], [23], [30]).

The solution to the linear-quadratic convection dominated elliptic optimal control

problem (1.1) is characterized by the first order optimality conditions. This coupled
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system ([26], [27], [13]) consists of the the state PDE

−ε∆y + b · ∇y + cy = f + u in Ω, (1.2a)

y = gD on ΓD, (1.2b)

ε
∂y

∂n
= gN on ΓN , (1.2c)

the adjoint PDE

−ε∆p− b · ∇p+ (c−∇ · b)p = −(y − y0) in Ω, (1.3a)

p = 0 on ΓD, (1.3b)

ε
∂p

∂n
+ (b · n)p = 0 on ΓN , (1.3c)

and the gradient equation

p = ωu in Ω. (1.4)

The solution of this system has three components, the state y, the adjoint p and

the control u. Since the two PDEs in this system are convection dominated (with

convection in opposite direction), some of the components y, u, p may exhibit layers.

Again, when these layers are not resolved, the standard FEM solution contains spu-

rious oscillations. Heinkenschloss and Collis [13] introduce the SUPG stabilization

to this coupled system, which significantly reduces the oscillations. However, as this

thesis shows by computation, oscillations may still occur in cross-wind direction in a

small band around the layers. Because of the coupling of the system and the oppo-

site convection in state and adjoint PDE, errors caused by spurious oscillations are
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propagated up- and downwind from the layers. These propagated errors might even

show in components of the solution which do not have layers [15]. Therefore, in the

optimal control setting it is even more important to resolve the local features of the

solution.

This thesis applies adaptive finite element methods, combined with SUPG stabi-

lization, to linear-quadratic convection dominated elliptic optimal control problems.

The goal is to obtain numerical solutions defined on meshes which are able to resolve

the layers in all components of the solution. Like in the single equation case, key

components in an adaptive strategy are a posteriori error indicators. Though error

estimation for SUPG solutions to single convection dominated diffusion equations is

an established technique, only recently a few of such indicators were proposed for

optimal control problems ([8], [17], [38]). The estimators in [17], [38] are essentially

a generalization of the norm-residual based error estimators. This thesis uses this

existing work and in addition extends the ZZ and local Neumann estimator to the

optimal control setting.

Recall that for the single convection diffusion equation there was no preferred

estimator which excels in all situations. Because of the presence of multiple layers in

different components of the solution and the increased capacity of error propagation,

there is even less of a clear choice in error estimators in the optimal control setting.

The numerical results shown in this thesis clearly illustrate in which situations the

classes of estimators excel or under perform.
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The restriction to three classes of estimators leaves out many proposed alterna-

tives. One of the methods out of scope of this thesis is goal-oriented estimation ([4],

[8]). The central idea in these methods is to reduce the error of a given functional

of the error eh using a duality based approach. However, the functional can be cho-

sen such that the goal-oriented estimator is in essence the same as the norm-residual

based approach mentioned above. In optimal control setting, the functional can be

chosen the same as the objective function [8]. Resolving layers using such techniques

is well worth exploring.

The adaptive strategy used in this work follows the iteration solve, estimate,

mark and refine ([9], [28]). Though the title of this thesis suggests all these aspects

of adaptive finite element methods are discussed, this work mainly focuses on solving

the problem (i.e. SUPG/Galerkin approximation) and error estimation. The mark

and refine steps, which are also essential to the adaptive process, are beyond the scope

of this thesis.

A popular strategy for selecting elements for refinement based on an error esti-

mator, is bulk marking ([9], [10], [11], [12], [28]). In this work a fixed percentage

of elements is marked each refinement step. In this approach there is a guaranteed

increase in elements, which has its computational benefits.

This thesis uses continuous finite element methods, which requires the underlying

mesh to be conform. Local refinement of triangular meshes is done through bisection.

This approach has been extensively studied in order to ensure that refined meshes
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are conform ([1], [5], [6], [10], [11], [12]). Another option is to use quadrilateral

meshes and interpolate the solution on hanging nodes ([2], [3]). One could also use

discontinuous Galerkin methods ([16], [31]), which do not require conformity of the

mesh.

Convergence of a similar adaptive strategy as outlined above has been proven

([28], [29]). However, these articles do not specifically target convection-diffusion

equations and SUPG stabilization. Moreover, they only use the norm-residual based

error estimator combined with the bulk marking strategy. Therefore, a solid mathe-

matical foundation for the convergence of all AFEMs used in this thesis still has to

be developed.

This work uses continuous finite element methods in conjuncture with SUPG sta-

bilization because it is so commonly used in literature. Hence, extending this known

theory is a logic step in applying adaptive FEM to optimal control problems. Though

methods have been developed ([21], [22]) which reduce the cross wind spurious oscil-

lations around the layers, these require additional artificial diffusion, and therefore

also reduce the sharpness of the layers.

1.1 Organization of the Thesis

This thesis first analyzes and compares different AFEMs for the single convection-

diffusion equation, and extends this theory to the optimal control setting.

The first section, Chapter 2, describes the finite element discretization and SUPG
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stabilization of a single convection-diffusion equation. Recall that key in an adaptive

regime is estimating the error of an obtained numerical solution. This thesis reviews

the existing theory on the ZZ, norm-residual based and local Neumann estimator

(Chapter 3). Local refinements driven by these different estimators yield different re-

sults. Chapter 4 explains several numerical experiments, and compares the effectivity

of the three estimators when applied to these examples.

The results in Chapters 2 – 3 form a foundation for the analysis of AFEMs for

linear-quadratic convection dominated elliptic optimal control problems. Chapter 5

first reviews the finite element discretization in conjuncture with SUPG stabilization,

and secondly extends the three estimators to the optimal control setting. Similar

experiments as in the single equation case are performed with these optimal control

problems. The second numerics chapter (Chapter 6) explains these examples, states

the results and compares the different estimators.



Chapter 2

Finite element discretization

This section discusses the solution of a single convection diffusion equation

−ε∆y + b · ∇y + cy = f in Ω, (2.1a)

y = gD on ΓD, (2.1b)

ε
∂y

∂n
= gN on ΓN , (2.1c)

using the finite element method with SUPG stabilization.

9

--
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2.1 Weak formulation

Given a subset E ⊆ Ω̄ define

‖v‖L2(E) =

[∫
E

|v|2
]1/2

, (2.2a)

‖v‖H1(E) =

[∫
E

|v|2 + |∇v|2
]1/2

, (2.2b)

‖v‖ε =

[∫
E

|v|2 + ε|∇v|2
]1/2

. (2.2c)

Furthermore, let

H1
D(Ω) =

{
v ∈ H1(Ω) : v = 0 on ΓD

}
,

H1
g (Ω) =

{
v ∈ H1(Ω) : v = gD on ΓD

}
,

and for w in the dual [H1
D(Ω)]∗ of H1

D(Ω) the norm is defined by

‖w‖ε,∗ = sup
v∈H1

D\{0}

(w, v)

‖v‖ε

. (2.3)

The weak form corresponding to (2.1) is obtained by multiplying (2.1a) with a

test function v ∈ H1
D(Ω), applying integration by parts and using (2.1c). This leads

to the following variational problem:

Find y ∈ H1
g (Ω) such that

a(y, v) = `(v) ∀v ∈ H1
D(Ω), (2.4)

where

a(y, v) =

∫
Ω

ε∇y · ∇v +

∫
Ω

b · ∇y v +

∫
Ω

cyv, (2.5)

`(v) =

∫
Ω

fv +

∫
ΓN

gNv. (2.6)

----
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Consider the following assumptions

(A1) Ω ⊂ Rd, is a polygonal domain with boundary ∂Ω decomposed into ΓN and

ΓD = ∂Ω \ ΓN .

(A2) b ∈ [W 1,∞(Ω)]d, c ∈ L∞(Ω), f ∈ L2(Ω), gN ∈ L2(ΓN), there exists yD ∈ H1(Ω)

such that yD = gD on ΓD.

(A3) ΓN ⊆ {x ∈ ∂Ω : b(x) · n∂Ω ≥ 0}

(A4) c− 1
2
∇ · b ≥ γ > 0 a.e. in Ω.

If ΓD has a nonzero d− 1 dimensional measure, then (A4) can be replaced by

(A4)’ c− 1
2
∇ · b ≥ γ ≥ 0 a.e. in Ω.

Under the assumptions (A1)-(A4) existence and uniqueness of the solution y ∈

H1(Ω) of (2.4) can be shown using the Lax-Milgram lemma. This work shows coer-

civity and continuity of the bilinear form with respect to the ε−weighted H1(Ω) norm

defined by

‖v‖ε =

[∫
Ω

|v|2 + ε|∇v|2
]1/2

.

Since 0 < ε� 1, the following relation holds

‖v‖2
H1(Ω) =

1

ε

[
ε‖v‖2

L2(Ω) + ε‖∇v‖2
L2(Ω)

]
≤ 1

ε
‖v‖2

ε . (2.7)

Lemma 2.1.1 If the assumptions (A1)-(A4) hold, then there exist α,M > 0 which

are independent of ε such that

a(v, v) ≥ α‖v‖2
ε ,
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and

|a(v, w)| ≤M‖v‖ε‖w‖H1(Ω),

|a(v, w)| ≤ M√
ε
‖v‖ε‖w‖ε.

for all v, w ∈ H1
D(Ω).

Proof: For ellipticity, note that for v ∈ H1(Ω)

a(v, v) = ε

∫
Ω

∇v · ∇v +

∫
Ω

(b · ∇v)v +

∫
Ω

cv2

= ε‖∇v‖2
L2(Ω) +

1

2

∫
Ω

(b · ∇v)v +
1

2

∫
Ω

(b · ∇v)v +

∫
Ω

cv2

= ε‖∇v‖2
L2(Ω) +

1

2

∫
Ω

(b · ∇v)v +
1

2

∫
Ω

(vb) · ∇v +

∫
Ω

cv2

Using integration by parts yields

a(v, v) = ε‖∇v‖2
L2(Ω) +

1

2

∫
Ω

(b · ∇v)v − 1

2

∫
Ω

∇ · (vb) v +

∫
∂Ω

v2b · n∂Ω +

∫
Ω

cv2

= ε‖∇v‖2
L2(Ω) +

1

2

∫
Ω

(b · ∇v)v − 1

2

∫
Ω

(v · ∇b+ b · ∇v) v +

∫
ΓN

v2b · n∂Ω +

∫
Ω

cv2

= ε‖∇v‖2
L2(Ω) +

∫
Ω

(c− 1

2
∇ · b)v2 +

∫
ΓN

v2b · n∂Ω.

Assumption (A4) implies

a(v, v) ≥ ε‖∇v‖2
L2(Ω) + γ‖v‖2

L2(Ω) ≥ α‖v‖2
ε ,

where α = min(1, γ). This inequality implies that the bilinear form a(·, ·) is elliptic,

independent of ε, in the ‖ · ‖ε norm. Continuity follows from

|a(v, w)| =
∣∣∣∣ε ∫

Ω

∇v · ∇w +

∫
Ω

(b · ∇v)w +

∫
Ω

cvw

∣∣∣∣ ,
=

∣∣∣∣ε ∫
Ω

∇v · ∇w +

∫
Ω

(∇ · (bv)− (∇ · b)v)w +

∫
Ω

cvw

∣∣∣∣ .
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Integration by parts and the Cauchy-inequality give

|a(v, w)| ≤ ε

∫
Ω

|∇v · ∇w|+
∫

Ω

|v(b · ∇w)|+
∫

Ω

|(∇ · b)vw|+
∫

Ω

|cvw|

≤ ε‖∇v‖L2(Ω)‖∇w‖L2(Ω) + ‖b‖∞‖v‖L2(Ω)‖∇w‖L2(Ω)

+ ‖∇b‖∞‖v‖L2(Ω)‖w‖L2(Ω) + ‖c‖∞‖v‖L2(Ω)‖w‖L2(Ω)

≤
(√

ε‖∇v‖L2(Ω) + ‖v‖L2(Ω)

) (
M1‖∇w‖L2(Ω) +M2‖w‖L2(Ω)

)
≤M‖v‖ε‖w‖H1(Ω),

with M1 =
√
ε+ ‖b‖∞, M2 = ‖∇b‖∞ + ‖c‖∞ and M = max(M1,M2). Using relation

(2.7) we obtain |a(v, w)| ≤ M√
ε
‖v‖ε‖w‖ε. 2

The continuity and ellipticity guarantee the existence of a unique solution by the

Lax-Milgram theorem (see, e.g., [14, 24]).

Theorem 2.1.2 If the assumptions (A1)-(A4) hold, then (2.4) has a unique solution

y ∈ H1(Ω).

Under additional regularity conditions additional smoothness results can be proved.

See, e.g., [32, 33]. The following result is proved in [33, L. 7.2].

Theorem 2.1.3 Assume that Ω ⊂ R2 is bounded and convex or has smooth boundary

and that ΓD = ∂Ω. Furthermore, let b, c, f be Hölder continuous on Ω, c ≥ 0, and let

g ∈ H3/2(∂Ω). There exists a constant C independent of ε such that

ε3/2|y|2 + ε1/2|y|1 + ‖y‖L2(Ω) ≤ C.
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In particular, Theorem 2.1.3 indicates that the norm of the second derivative of

the solution y behaves like ε−3/2,

‖y‖H2(Ω) = O(ε−3/2), (2.8)

which is true in many examples where the solution exhibits layers. See [32, 33].

2.2 Galerkin approximation

Let Th be a conforming triangulation and let the following function spaces on Th be

defined by:

Yh =
{
yh ∈ H1(Ω) : yh|τ ∈ Pp(τ), ∀τ ∈ Th

}
,

Y 0
h = {yh ∈ Yh : yh = 0 on ΓD} ,

Y g
h = {yh ∈ Yh : yh = gD on ΓD} .

Assume that gD is a piecewise polynomial on ΓD. The finite element method reduces

the weak form (2.4) to:

Find yh ∈ Y g
h such that

a(yh, vh) = `(vh) ∀vh ∈ Y 0
h . (2.9)

This thesis uses piecewise linear functions (p = 1). All theory presented in this work

can be generalized to higher order piecewise continuous polynomials.

Let y be the solution to the variational problem and let yh be the Galerkin ap-



15

proximation. By Lemma 2.1.1 and orthogonality of the error

α‖y − yh‖2
ε ≤ a(y − yh, y − yh) = a(y − yh, y − vh) ≤M‖y − yh‖ε‖y − vh‖H1(Ω).

for any arbitrary vh ∈ Y 0
h . Hence,

‖y − yh‖ε ≤
M

α
inf

v∈Yh

‖y − vh‖H1(Ω).

This equation implies that the error of the Galerkin approximation yh is dependent

on ε. This becomes even more evident if in addition y ∈ H2(Ω). A standard a priori

error bound can be applied to this result ([14, p.135], [24, p.382]):

‖y − yh‖ε ≤ Ch‖y‖H2(Ω), (2.10)

for constant C > 0, and h an indicator of the largest element size in Th. Equation (2.8)

shows that the constant term in this error bound is large in convection dominated

situations (i.e. 0 < ε � 1). Therefore, when ε < h the constant term in this bound

dominates the mesh size h. Hence, h needs to be sufficiently small, especially around

the layers, in order to significantly reduce the error.

Besides this disadvantageous property of convection dominated diffusion equa-

tions, there is another, Galerkin specific, reason why it is hard to compute a numeri-

cal solution with the standard finite element method. Recall the definition of ‖ · ‖ε,

which expands the bound (2.10) to:

‖y − yh‖2
L2(Ω) + ε‖∇(y − yh)‖2

L2(Ω) ≤ C2h2‖y‖2
H2(Ω). (2.11)

This bound implies that large errors in the gradient are possible since they are

weighted by ε � 1. Therefore, when ε < h, the Galerkin approximation may not

--
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be able to control the error in its gradient. Errors that arise from not resolving

boundary layers are propagated throughout the entire numerical solution. In practice

this results in Galerkin approximations which may contain spurious oscillations when

the mesh-size is not fine enough.

Computing a solution on uniform meshes of these sufficiently small h < ε elements

is often unfeasible. Therefore stabilization terms need to be added to the standard

Galerkin method. The stabilized FEM aims to generate ‘good’ solutions for moderate

mesh sizes. Additionally locally refined meshes, preferably around the layers, could

solve this issue, which motivates the adaptive strategy used in this thesis.

2.3 SUPG stabilization

A popular stabilization method is the streamline upwind / Petrov Galerkin (SUPG)

method, sometimes referred to as streamline diffusion FEM (SDFEM) which was

introduced by Hughes and Brooks ([18], [19]). This method adds stabilization terms

to the weak form in (2.9). The stabilized problem is:

Find yh ∈ Y g
h such that

ah(yh, vh) = `h(vh) ∀vh ∈ Y 0
h , (2.12a)
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where

ah(yh, vh) = a(yh, vh) +
∑
τ∈Th

δτ (−ε∆yh + b · ∇yh + cyh, b · ∇vh)τ (2.12b)

`h(vh) = `(vh) +
∑
τ∈Th

δτ (f, b · ∇vh)τ , (2.12c)

and δτ , τ ∈ Th, are stabilization parameters. The inner product (·, ·)τ in the above

definition is the L2(τ) inner product. The stabilization parameters highly influence

the efficiency of the method and need to be chosen carefully. Let the element Peclet

number of an element τ be defined as

Pτ =
hτ

2ε
‖b‖τ,∞,

where hτ is an indicator of the size of τ . A common choice for hτ is the diameter of

τ along the convection flow b. John and Knobloch [21] introduced an approximation

which is exact for the triangular elements used in this thesis. Let Cτ be the barycenter

of τ , then

hτ =
2|b(Cτ )|∑3

i=1 |b(Cτ ) · ∇φi(Cτ )|
,

where {φi}3
i=1 are the three nonzero linear basis functions on τ . The mesh-Peclet num-

ber indicates in what degree convection is dominating over diffusion on a element τ .

Large Peclet numbers, Pτ � 1, correspond to a convection dominated regime, while

low Peclet numbers, 0 < Pτ � 1, are associated with diffusion dominated situations.

For such low Peclet numbers, the Galerkin approximation will yield satisfactory re-

sults, and one should refrain from introducing any stabilizing terms. The choice of

the stabilization parameters are an ongoing discussion in the scientific community.



18

There does not seem to be an optimal choice for every problem. Elman et al. [14,

p.132] published a simple parameter that yields satisfactory numerical results:

δτ =


hτ

2‖b‖

(
1− 1

Pτ

)
Pτ ≥ 1,

0, Pτ < 1.

(2.13)

Note that for low Peclet numbers the SUPG approximation is equal to the Galerkin

approximation. For other parameter choices, see [21], [22], [25].

There exist a unique solution of (2.12), since ah(·, ·) is coercive and continuous in

the SUPG norm ([14], [24])

‖v‖supg =

[
‖v‖2

L2(Ω) + ε‖∇v‖2
L2(Ω) +

∑
τ∈Th

δτ‖b · ∇v‖2
L2(Ω)

]1/2

.

Since ‖v‖ε ≤ ‖v‖supg for v ∈ H1
D(Ω) the SUPG norm is stronger than the weighted

norm. If Pτ � 1 for all τ and if in addition y ∈ H2(Ω), then ([14, p.136], [24, p.381]):

‖y − yh‖supg ≤ Ch3/2‖y‖H2(Ω). (2.14)

Note that the ‖y‖H2(Ω) is still inversely dependent on ε by equation (2.8). The benefit

of using SUPG over Galerkin becomes evident when expanding the SUPG norm:

‖y−yh‖2
L2(Ω) +ε‖∇(y−yh)‖2

L2(Ω) +
∑
τ∈Th

δτ‖b ·∇(y−yh)‖2
L2(Ω) ≤ C2h3‖y‖2

H2(Ω). (2.15)

Again, the error in the gradient is weighted by an ε � 1 term. However, the SUPG

stabilization yields a term which controls the error the gradient along the convection

flow b. Since δτ is not dependent on ε, a large error in the gradient along the convection

lines is not possible. This summarizes the power of SUPG stabilization. In practice
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the SUPG stabilization significantly reduces the oscillations in the direction of the

convection. This implies that the gradient error in the cross wind direction is not

controlled, and the solution could still have spurious oscillations perpendicular to

the convection. However, the SUPG stabilization leads to a smaller error in the

gradient perpendicular to the convection b than the standard Galerkin approximation.

Note that the the bound (2.15) contains a h3 term instead of the h2 term of the

Galerkin approximation in equation (2.10). Hence, when h approaches ε, the gradient

error in all directions becomes more influential, and is reduced faster. This double

play is exceptionally effective and makes this method the preferred choice in many

applications.

SUPG stabilization does not make adaptive refinement superfluous. Recall that

the solutions to convection dominated diffusion equations typically exhibit layers.

The artificial diffusion along the convection lines that SUPG introduces, also reduces

the sharpness of the layers. A remedy is local refinement to resolve layers sufficiently

(i.e. such that Pτ < 1 along the layers), and than switch to Galerkin approximation

in these areas. This justifies our choice of stabilization parameter, which enables this

switch by setting δτ = 0.



Chapter 3

A posteriori error estimation for

convection-diffusion equations

Adaptive finite element methods repeatedly improve a numerical solution by locally

refining the underlying mesh. The selection of elements for refinement is based on the

local error of the numerical solution. The exact error is never known, since it requires

the true solution, which FEM intends to approximate in the first place. Therefore,

approximation techniques are necessary. This chapter focuses on such a posteriori

error estimation.

There is much written about error estimation over the last few decades. This

thesis considers three estimators. These specific classes have been studied the most

extensively the specific case of convection dominated diffusion equations. The three

methods are the Zienkiewicz-Zhu error, the norm-residual based and the local Neu-

20
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mann problem estimator.

Let y be the solution to the variational problem, let yh be the Galerkin or SUPG

approximation and define the error by ey = y− yh. Typically an estimator ητ tries to

approximate ‖ey‖τ in some norm. The overall global error η is commonly defined by

η =

[∑
τ∈Th

η2
τ

]1/2

.

One of the difficulties in error estimation is to find an appropriate measure of error.

That is, to find a norm such that ‖ey‖ can be approximated properly. In common

practice ([9], [20], [34], [35]), an error estimator efficient and reliable if

‖y − yh‖ ≤ C1η, (3.1a)

ητ ≤ cτ‖y − yh‖N(τ), ∀τ ∈ Th, (3.1b)

where C1 > 0 is independent of the triangulation Th and N(τ) is some neighborhood

of τ (definition will follow). One usually assumes that cτ is nearly constant (cτ ≈

C2,∀τ ∈ Th). In many cases the last inequality is hard to prove and a similar bound

is used:

η ≤ C2‖y − yh‖. (3.1c)

This work reviews the three estimators. The first class, the Zienkiewicz-Zhu estimator

is probably the most simple, and therefore a good start of this chapter.
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3.1 Zienkiewicz-Zhu estimator

One of the first error estimators was introduced by Zienkiewicz and Zhu [39]. This

so-called averaging technique obtains a high order recovery Gy of the gradient of y

such that Gy ≈ ∇y, where y is the solution to the variational problem (2.4). The aim

is to estimate ‖∇y−∇yh‖L2(Ω) by ‖Gy−∇yh‖L2(Ω), where yh is either a Galerkin or

SUPG approximation. Zienkiewicz and Zhu proposed to use the following piecewise

linear function, defined at the nodes {xj} of the triangulation Th:

Gy(xj) =
∑

τ∈N(xj)

|τ |
|N(xj)|

∇yh|τ , (3.2)

where N(xj) are the adjacent elements to xj. The element-wise ZZ estimator is

defined by

ηZZ
τ = ‖Gy −∇yh‖L2(τ).

Showing upper and lower bounds in the sense of (3.1) can be done when assuming

Gy is a higher order approximation of ∇y than ∇yh ([20]). Carstensen and Bartels

published an extensive study [7] on averaging techniques, where the ZZ estimator is

a subclass of. In their work they prove these bounds in a wider context.

This simple estimator only uses yh and does not need the problem data. Hence, it

seems likely that with more information, especially when the convection term domi-

nates, more accurate estimators are feasible. A class of estimators which incorporates

the problem data is based on the residual of the strong partial differential equation.
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3.2 Norm-residual based error estimation

There are different approaches to build an error estimator based on the residual of

the strong form of the PDE. The indicators introduced in this section incorporate

the norm of the residuals, and will therefore be referred to as norm-residual based

estimators.

Definition 3.2.1 Let yh be a Galerkin or SUPG approximation, then its interior

residual is defined by

Rint(yh) = f + ε∆yh − b · ∇yh − cyh

and its edge residual by

Redge(yh) =


0 if e ∈ ED

h ,

g − ε∇yh · n if e ∈ EN
h ,

ε [∇yh · n] if e ∈ EΩ
h ,

or with slight modification:

R̃edge(yh) =


0 if e ∈ ED

h ,

g − ε∇yh · n if e ∈ EN
h ,

ε
2
[∇yh · n] if e ∈ EΩ

h .

Here EΩ
h are interior edges, ED

h are Dirichlet edges and EN
h are Neumann edges of Th.

-
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Let y be the solution to the variational problem, let yh be the Galerkin or SUPG

approximation and define the error by ey = y − yh. Consider a(eh, v) for v ∈ H1
0 (Ω):

a(eh, v) = a(y, v)− a(yh, v) = `(v)− a(yh, v),

=

∫
Ω

fv +

∫
ΓN

gv −
[∫

Ω

ε∇yh · ∇v + b · ∇yhv + cyhv

]
,

=

∫
Ω

fv +

∫
ΓN

gv −
∑
τ∈Th

[∫
τ

ε∇yh · ∇v + b · ∇yhv + cyhv

]
,

=

∫
Ω

fv +

∫
ΓN

gv −
∑
τ∈Th

[∫
τ

−ε∆yhv + b · ∇yhv + cyhv +

∫
∂τ

ε∇yh · n v
]
.

Inserting the definition of the residual yields

a(eh, v) =

[∑
τ∈Th

∫
τ

Rint
τ (yh)v

]
+

[∫
ΓN

gv −
∑
τ∈Th

∫
∂τ

ε∇yh · n v

]
,

=

[∑
τ∈Th

∫
τ

Rint(yh)v

]
+

∑
e∈EN

h

∫
e

gv −
∑
τ∈Th

∫
∂τ

ε∇yh · n v

 ,
=

[∑
τ∈Th

∫
τ

Rint(yh)v

]
+

∑
e∈EN

h

∫
e

(g − ε∇yh · n)v

−
∑

e∈EΩ
h

∫
e

[ε∇yh · n] v

 .
This leads to the following formula:

a(eh, v) =
∑
τ∈Th

∫
τ

Rint(yh)v +
∑
e∈Eh

∫
e

Redge(yh)v ∀v ∈ H1
0 (Ω). (3.3)

This equation is fundamental to most residual based error estimators. Before formally

defining the norm-residual based error indicators, consider a technical result used to

analyze the residual based error estimator. We use the following notation. For a

triangle τ ∈ Th and an edge e in the conforming triangulation Th, hτ is the length of
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the longest edge of τ , and he is the length of e and

N(τ) = ∪{µ ∈ Th : µ̄ ∩ τ̄ 6= ∅} ,

N(e) = ∪{µ ∈ Th : µ̄ ∩ e 6= ∅} .

are the neighborhoods of an element τ and edge e (see Figure 3.1).

��

Figure 3.1: The neighborhood of a highlighted triangular element (left), an edge

(middle) and a vertex (right), is the union of the displayed elements.

Lemma 3.2.2 (Verfürth, [34, p.11], [35], [37]) Let Th be a conforming triangulation

of a domain Ω ⊂ R2. For any arbitrary function v ∈ H1(Ω) there exists a function

Ihv ∈ Yh such that for all elements τ ∈ Th and edges e ∈ Eh the following is true:

‖v − Ihv‖L2(τ) ≤ C3hτ ‖v‖H1(N(τ)),

‖v − Ihv‖L2(e) ≤ C4

√
he ‖v‖H1(N(e)),

‖Ihv‖L2(τ) ≤ C5‖v‖H1(N(τ)),

where C3, C4, C5 are independent of Th.

This lemma provides the tools for norm-residual based error estimators, formulated

in Definition 3.2.3.
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Definition 3.2.3 The norm-residual based element-wise error estimator in the H1

sense is defined by

ηRes−H1
τ ≡

h2
τ‖Rint(yh)‖2

L2(τ) +
∑

e∈E(τ)

he‖R̃edge(yh)‖2
L2(e)

1/2

.

The element-wise estimator in the L2 norm is defined by

ηRes−L2
τ ≡

h4
τ‖Rint(yh)‖2

L2(τ) +
∑

e∈E(τ)

h3
e‖R̃edge(yh)‖2

L2(e)

1/2

.

Moreover, the global error estimates are defined by:

ηRes−H1 =

[∑
τ∈Th

(
ηRes−H1

τ

)2]
, and ηRes−L2 =

[∑
τ∈Th

(
ηRes−L2

τ

)2]
.

The next result shows that the norm-residual based error estimators satisfy (3.1a) -

(3.1c).

Theorem 3.2.4 (Verfürth, [37, p.1772-1773]) Let ηRes−H1 be as in Definition 3.2.3,

let y be the solution to the variational problem (2.4) and let yh be the SUPG approx-

imation from (2.12), then there exists constants C9, C10 > 0 such that:

‖y − yh‖ε + ‖b · ∇(y − y)h‖∗ ≤
C9√
ε
ηRes−H1

τ ,

ηRes−H1
τ ≤ C10 [ ‖y − yh‖ε + ‖b · ∇(y − y)h‖∗ ] .

Proof: Let y be the exact solution to the variational problem, let yh be the SUPG

approximation and define eh = y − yh. For a function v ∈ H1
D(Ω) let its interpolant
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Ihv ∈ Y 0
h be defined by Lemma 3.2.2. Then,

a(eh, v) = a(eh, v − Ihv) + a(eh, Ihv)

= a(eh, v − Ihv) + a(y, Ihv)− a(yh, Ihv)

= a(eh, v − Ihv) + `(Ihv)− `(Ihv)−
∑
τ∈Th

δτ (f + ε∆yh − b · ∇yh − cyh, b · Ihv)τ

= a(eh, v − Ihv)−
∑
τ∈Th

δτ (R
int(yh), b · Ihv)τ

Replacing a(eh, v − Ihv) by the identity of equation (3.3) yields:

a(eh, v) =

[∑
τ∈Th

∫
τ

Rint(yh) (v − Ihv)

]
+

[∑
e∈Eh

∫
e

Redge(yh) (v − Ihv)

]

−

[∑
τ∈Th

δτ

∫
τ

Rint(yh) (b · Ihv)

]
,

≤

[∑
τ∈Th

‖Rint(yh)‖L2(τ)‖v − Ihv‖L2(τ)

]
+

[∑
e∈Eh

‖Redge(yh)‖L2(e)‖v − Ihv‖L2(e)

]

+

[∑
τ∈Th

δτ‖Rint‖L2(τ)‖b · Ihv‖L2(τ)

]

Because ‖b · Ihv‖L2(τ) ≤ ‖b‖∞,τ‖Ihv‖L2(τ) and Lemma 3.2, this inequality becomes:

a(eh, v) ≤
∑
τ∈Th

C3hτ‖Rint(yh)‖L2(τ)‖v‖H1(N(τ)) +
∑
e∈Eh

C4

√
he‖Redge(yh)‖L2(e)‖v‖H1(N(e))

+
∑
τ∈Th

C5δτ‖Rint(yh)‖L2(τ)‖v‖H1(N(τ))‖b‖∞,τ ,

-
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with C3, C4 > 0 from Lemma 3.2.2 and C5 > 0. Recall that δτ ≤ hτ

2‖b‖∞,τ
by equation

(2.13). Note that the terms ‖b‖∞,τ cancel out, which leads to

a(eh, v) ≤

[
(C3 +

1

2
C5)

∑
τ∈Th

h2
τ‖Rint(yh)‖2

L2(τ) + C4

∑
e∈Eh

he‖Redge(yh)‖2
L2(e)

]1/2

×

[∑
τ∈Th

‖v‖2
H1(N(τ))

]1/2

,

≤ C6‖v‖H1(Ω)

[∑
τ∈Th

h2
τ‖Rint(yh)‖2

L2(τ) +
∑
e∈Eh

he‖Redge(yh)‖2
L2(e)

]1/2

,

where C7 = C6 max{C3 + 1
2
C5, C4}1/2 and C6 is defined by inequality

‖v‖H1(Ω) ≤ C6

∑
τ∈Th

‖v‖H1(τ),

Verfürth [34, p.13] proves that this constant only depends on the smallest angle in

the mesh. This leads to

a(eh, v)

‖v‖ε

≤ C7√
ε
ηRes−H1, ∀v ∈ H1

D(Ω).

Select ṽ ∈ H1
D\{0} such that the supremum

sup
v∈H1

D\{0}

a(eh, v)

‖v‖ε

is attained. Verfürth proves [37, l.3.1] there exist a C8 > 0 such that ∀w ∈ H1
D(Ω)

a(w, ṽ)

‖ṽ‖ε

≥ C8 [‖w‖ε + ‖b · ∇w‖∗].

Setting w = y − yh results to the upper bound of the theorem (with C9 = C7/C8):

‖y − yh‖ε + ‖b · ∇(y − yh)‖∗ ≤
C9√
ε
ηRes−H1.
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The proof of the lower bound in the theorem is beyond the scope of this thesis, but

is published by Verfürth [37, p.1774-1776]. 2

Remark 3.2.5 Similar bounds (as those shown in Theorem 3.2.4) hold for the Res-

L2 estimator of Definition 3.2.3. Their derivation is based on a duality technique

([4], [20]), and is beyond the scope of this thesis.

How well the Res-H1 and Res-L2 estimators approximate the true error depends

heavily on the problem dependent constants C3, C4, C5, C6. These four constants

are combined in C7, which implicitly assumes that both interior and edge residual

have equal weights. Therefore combining interior and edge residual has to be done

explicitly in this approach.

Another, maybe even more compromising result of Theorem 3.2.4, is that the

upper bound of the error estimator is inversely dependent on ε. Hence, for the

convection-dominated equations studied in this work, the error might be grossly over-

estimated.

A different, maybe more natural approach is the use of a local Neumann estimator.

This indicator combines the residuals implicitly, and could potentially overcome the

issues mentioned above.
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3.3 Estimators based on solving local Neumann

problems

Though this estimator is also based on the residual, it takes quite a different approach

than the previous section. Recall equation (3.3) in a slightly different form:

∑
τ∈Th

a(eh, v)τ =
∑
τ∈Th

∫
τ

Rint(yh)v +
∑

e∈E(τ)

∫
e

R̃edge(yh)v

 ∀v ∈ H1
0 (Ω),

where a(·, ·)τ is the standard bilinear form of (2.5) restricted to element τ . Removing

the sums from both sides, results in a local Neumann problem, with the error as

solution.

Definition 3.3.1 Let Qτ ⊂ H1(τ) be finite dimensional. If êτ ∈ Q is the solution of

a(êτ , v)τ =

∫
τ

Rint(yh)v +
∑

e∈E(τ)

∫
e

R̃edge(yh)v ∀v ∈ Q0
τ (3.4)

then the element-wise local Neumann estimators in H1 and L2 are defined by

ηNeu−H1
τ ≡ ‖êτ‖H1(τ), ηNeu−L2

τ ≡ ‖êτ‖L2(τ).

and the global estimator are defined by

ηNeu−H1 =

(∑
τ∈Th

(
ηNeu−H1

τ

)2)1/2

, ηNeu−L2 =

(∑
τ∈Th

(
ηNeu−L2

τ

)2)1/2

.

Solving the local Neumann problem in Definition 3.3.1 requires a finite dimensional

subspace Qτ of H1(τ). Verfürth [34] proposes the following four bubble functions on

a reference triangle (see Figure 3.2):
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(0,0) (1,0)

(0,1)

Figure 3.2: A reference triangle.

ψ1(x1, x2) = 4x1x2, (3.5a)

ψ2(x1, x2) = 4x1(1− x1 − x2), (3.5b)

ψ3(x1, x2) = 4x2(1− x1 − x2), (3.5c)

ψ4(x1, x2) = 27x1x2(1− x1 − x2). (3.5d)

The solution to (3.4) can be approximated from the span of these basis functions {ψi}

mapped to element τ . This leads to a 4× 4 linear system that needs to be solved for

each element.

The details of the error bounds (3.1) for these error estimators are beyond the

scope of this thesis, but have extensively been studied by Verfürth ([34], [35]). He

recently extended this work [37] in the context of the bounds described in Theorem

3.2.4.

Elman et al. [14] reason that the b · ∇uv and cuv terms can be dropped from

the restricted bilinear form a(·, ·)τ without significant loss of accuracy. Kay and

Silvester [23] also adopt such strategy as extension of the work of Verfürth [35].
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However, dropping these terms does not yield a significant computational advantage,

and therefore they are included in this work.

Note that combining interior and edge residual and the diffusion constant ε is done

implicitly. Hence, there are no constants that need to be estimated. This implicit

character is a considerable benefit of this estimator in theory.



Chapter 4

Numerics I: Single convection

diffusion equations

This chapter contains numerical results for single convection diffusion equations. Its

aim is to illustrate the theory introduced in the previous chapters. Papastravrou and

Verfürth [30], as well as John [20], have published numerical studies on AFEM com-

bined with SUPG for convection dominated diffusion equations. The shown results

in this chapter are compared to their findings.

4.1 Notes on numerical experiments

The theory introduced so far has been focused on the SUPG approximation and a

posteriori error estimation. To implement AFEMs, elements need to be selected for

refinement and the mesh must be refined based on this selection and in such a way

33
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that the refined mesh is conforming. Strategies to excecute these tasks are discussed

on this section.

Let y be the solution to the variational problem and let yh be the Galerkin or the

SUPG approximation. The steps of an adaptive finite element method are usually

repeated until some stopping criterion is reached. There are two options, given some

tolerance TOL and number of nodes Nmax, either

1. ‖y − yh‖ < TOL, or

2. Th has more than Nmax nodes.

Since y is commonly not know, in many applications one sets Nmax in advance and

uses the second rule. Of course, if η is an indicator which estimates the error in some

norm ‖ · ‖, also η < TOL could be a stopping criterion. However, this assumes that η

is a good approximation of ‖y− yh‖. If the exact solution is known, one can compute

the effectivity index

Ieff(η) ≡ η

‖y − yh‖

to see how well the estimator approximates the true error.

The work of Bänsch ([5], [6]) is the basis of many local refinement algorithms for

triangular meshes (for refinement of tetrahedral meshes see [1]). The mesh refinement

used in this thesis is based on Bänsch’s ideas. The implementation used in this work

is derived from AFEM@MATLAB from Chen [12]. This software package is the

predecessor of iFEM [10], which contains an advanced refinement tool.
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Let the current triangulation Th contain Nt elements. After a local error estimator

ητ has been obtained for each element τ , some elements need to be selected for

refinement. Many options have been proposed ([5], [10], [12], [34]), however this work

only uses one. First order the triangles τk such that ητ1 , ητ2 , . . . , ητNt
is descending.

Let θ ∈ (0, 1) (typically θ ≈ .2), refine elements τk, k = 1, . . . , bθNtc. The main

benefit of this approach is that each refinement will have a guaranteed percentage of

increase in elements. For a numerical comparison of different marking strategies see

[30].

4.2 Numerical examples

The examples studied in this chapter are more commonly used in the literature.

Example 1A shows how a boundary layer is reseloved by local refinement. In the

second example, 1B, an inner layer needs to resolved, which in this case is slightly

more complex than the first example. Finally, in Example 1C, an inner and boundary

layer need to resolved.

4.2.1 Example 1A: Boundary layer

This example originates from work by Collis, Heinkenschloss and Leykekhman ([13],

[15]). Consider the function

η(x) = x− exp((x− 1)/ε)− exp(−1/ε)

1− exp(−1/ε)
. (4.1)
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ε = 10−1 ε = 10−2 ε = 10−3

Figure 4.1: Example 1A: The effect of increasing convection on a solution (θ = 45o)

containing a boundary layer (ε = 10−1, 10−2, 10−3), surface plots.

Let Ω = (0, 1)2, θ = 45o, b = (cos θ, sin θ) and c = 0 and let the true solution be:

y(x1, x2) = η(x1) η(x2).

The right hand side can now be determined by inserting these identities in (2.1),

which leads to:

f(x1, x2) = −ε∆y(x1, x2) + b ·∆y(x1, x2),

= −ε [ η′′(x1)η(x2) + η(x1)η
′′(x2) ] + [ cos θ η′(x1)η(x2) + sin θ η(x1)η

′(x2) ] .

Figure 4.1 shows the exact solution for various diffusion parameters ε. As ε be-

comes smaller, a boundary layer forms on the boundary {x ∈ ∂Ω : x1 = 1 or x2 = 1}.

The region in which the gradient of y is large becomes the smaller the smaller ε. Ide-

ally, an adaptive refinement procedure would pick up these layers, and refine around

the upper and right boundary.

Applying the Neu-L2 estimator (others yield very similar results), yields numerical
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Figure 4.2: Example 1A with ε = 10−3: Mesh generated by the Neu-L2 estimator

(left) with roughly 105 nodes. The figure on the right displays the average mesh

Peclet numbers around the boundary layer.

solutions on a sequence of refined meshes. The refined mesh, after Nmax = 105 has

been reached, is shown in Figure 4.2. Note how the refinement picks out the boundary

layer and places all its nodes in this region. This figure also shows the average

mesh Peclet number around the boundary layer throughout the refinement. Uniform

refinement, indicated by the red line, yields a straight line in this figure. The reason

is that ε and ‖b‖∞ are constant in this example, and hence Pτ is constant in the mesh

and is linearly dependent on hτ .

Figure 4.2 shows that local refinement reduces the mesh Peclet numbers around

the boundary layer much faster than the uniform refinement, which is exaclty to be

expected, since the locally refined meshes have many more elements around the layer.

A few of the computed solutions for ε = 10−3 are shown in Figure 4.3. The
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Figure 4.3: Example 1A with ε = 10−3: Surface plots of the SUPG solution after

Nmax ≈ 200, 400, 800, 1600, 3200, 6400 (one value of Nmax from left to right).

SUPG solution approximates the true solution well away from the boundary layer

on all meshes. On coarser meshes, the solution in the boundary layer cannot be

resolved. The computed SUPG solution exhibits small oscillations perpendicular to

the direction of convection. After more refinements, the mesh size around the layer

is sufficiently small so that the boundary layer can be resolved and the spurious

oscillations near the boundary layer are reduced..

Figure 4.4 shows the H1 and L2 errors during the refinements. Note that initially

the global H1 errors go up, which is do to the oscillations at the boundary. These

oscillations dominate the global H1 error. It seems likely that the H1 global error

restricted to the region away from the boundary layer is much smaller. Interesting to

•, 

•, •, 
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Figure 4.4: Example 1A with ε = 10−3: Errors of uniform refinement (red) and local

(blue) refinement using Neu-L2 estimator, measured in H1(Ω) (left) and L2(Ω) (right)

norm.

see is the convergence of the L2 norm of the error. The better the boundary layer is

resolved, i.e. the lower the mesh Peclet numbers around the boundary, the faster the

convergence.

The localized behavior of the oscillations becomes even more evident when look-

ing at a cross section of the numerical solution. Figures 4.5 and 4.6 show such a

cross section along the line x1 = x2. This cross section is along the convection flow.

The SUPG solution approximates the true solution very well away from the bound-

ary layer on all meshes. Unless the mesh is sufficiently refined, the SUPG solution

cannot resolve the boundary layer. Eventually, local refinement enables an excellent

approximation of the solution in the boundary layer.

1::::::: I 1::::::: I 
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Figure 4.5: Example 1A with ε = 10−3: Cross section of the solution along the

constant convection flow after Nmax ≈ 200, 400, 800, 1600, 3200, 6400 (one value of

Nmax from left to right). Displayed lines are the true solution (black), the solution

with uniform refinement (red) and the local refinement solution (blue).
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Figure 4.6: Example 1A with ε = 10−3: Zoomed cross section (around the

boundary layer) of the solution along the constant convection flow after Nmax ≈

200, 400, 800, 1600, 3200, 6400 (one value of Nmax from left to right). Displayed lines

are the true solution (black), the solution with uniform refinement (red) and the local

refinement solution (blue).
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4.2.2 Example 1B: Circular inner layer

The convection-diffusion equation of this example has been studied by John [20] and

in optimal control setting by Hinze, Yan and Zhou [17]. Again, in this example the

domain is defined by Ω = (0, 1)2. Let b = −(2, 3), let c = 1, and let the true solution

be

y(x1, x2) =16x1(1− x1)x2(1− x2)

×

(
1

2
+

1

π
arctan

[
2√
ε

(
1

16
−
(
x1 −

1

2

)2

−
(
x2 −

1

2

)2
)])

.

In this problem there is only a Dirichlet boundary, hence, ΓD = ∂Ω, ΓN = ∅ (note

y(x1, x2) = 0 on ∂Ω). The right hand side is now determined by

f(x1, x2) = −ε∆y(x1, x2)− 2
∂

∂x1

y(x1, x2)− 3
∂

∂x2

y(x1, x2) + y(x1, x2).

Figure 4.7 shows the exact solution for various diffusion parameters ε. As ε becomes

smaller, an inner layer forms.

ε = 10−2 ε = 10−4 ε = 10−6

Figure 4.7: Example 1B: Surface plots of the analytic solution for diffusion parameters

ε = 10−2, 10−4, 10−6. As ε becomes smaller, a circular inner layer forms.

Solving this problem on a uniform mesh gets increasingly difficult as shown in

-­. ' -- .. -- ... 
X. -­. ' --- .. -- ... 

X. -­. ' --- .. -- ... 
X. 
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ε = 10−2 ε = 10−4 ε = 10−6

Figure 4.8: Example 1B: Solution on a uniform mesh with (approximately 16641

nodes) of a problem with circular interior layer for ε = 10−2, 10−4, 10−6 (fixed ε for

each column). Top row are surface plots, bottom row are top-down views.

Figure 4.8. When ε = 10−6 the SUPG solution with a mesh of about 16641 nodes

(129× 129) cannot resolve the inner layer. The solution exhibits spurious oscillations

perpendicular to the direction of convection near the inner layer. These oscillations

are also convected through part of the domain. This transport of the error due to the

strong convection is a main difference between this example and Example 1A. Any

error in the layer is propagated downwind from the layer. Since Example 1A only had

a boundary layer errors in the layer could not pollute the solution into the domain. In

the present example, the solution downwind from the layer is polluted. This behavior

will cause significant differences in the performance of the error estimators.

x, x, 
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The propagation of errors from the circular inner layer into the interior of the

domain has drastic implications for adaptive finite element methods. To compute a

good approximation of the solution, the mesh near the inner layer needs to be refined.

Only if the circular inner layer can be resolved there will be no propagation of errors

and the resulting errors downwind are reduced. However, the errors downwind from

the inner layer cause the numerical solution to have a large gradient and residual

downstream. This will cause most error estimators to refine the mesh away from the

inner layer, thus trying to cure the symptoms but not the cause.

Figure 4.9 shows the meshes of refinements driven by the ZZ, Res-H1, Res-L2,

Neu-H1 and Neu-L2 estimators. For ε = 10−2, 10−4 all estimators appear to generate

satisfactory meshes. In the third case, when ε = 10−6, the effect mentioned above

seems to influence the result. Especially the ZZ estimator places a higher emphasis on

the propagated errors than on the oscillations at the layer. Since the ZZ estimator only

uses regularity information this seems logical. The propagated oscillations downwind

have steep gradients and will therefore yield high values in ‖∇y −∇yh‖L2(Ω).

The residual based estimators also seem to be influenced by this effect, although

to a lesser degree. The local Neumann estimators do generate the expected meshes.

However, in his numerical study, John [20] also considers ε = 10−8 and in this case

none of the error estimators, not even the norm-residual and the local Neumann

estimators, deliver a satisfactory result.

For more insight into the errors see Figure 4.10. The top two rows contain the H1
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Figure 4.9: Example 1B: Generated locally refined meshes (Nmax = 12000) for ε =

10−2, 10−4, 10−6 (fixed ε for each column). Row 1: ZZ-meshes, row 2: Res-H1 meshes,

row 3: Res-L2 meshes, row 4: Neu-H1 meshes, row 5: Neu-L2 meshes.
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Figure 4.10: Example 1B: Errors of uniform and local refinement using ZZ, Res-

H1, Res-L2, Neu-H1 and Neu-L2 estimator for ε = 10−2, 10−4, 10−6 (fixed ε for each

column), measured in H1(Ω) (top row) and L2(Ω) (middle row) norm. The final row

are the effectivity indices of the estimators.
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and L2 error of the computed solutions during refinement. The black line indicates

uniform refinement. Note that for ε = 10−2 the solution computed with uniform

refinement does not appear to be much worse than the solutions computed with

locally refinement. Observe the computed meshes for ε = 10−2 shown in the left

column in Figure 4.9. The elements in these meshes are not localized, and therefore

close to uniform refinement. When ε decreases the differences become more apparent.

The third row in Figure 4.10 show the effectivity indices of the global error es-

timators. Ideally, one would like the effectivity indices to converge to one. At first

sight there does not seem to be any convergence in the indices, especially not to

the desired case of Ieff = 1 (the dotted line). John [20] does observe convergence in

his experiments on this example with ε = 10−6 and ε = 10−8 when the number of

nodes is approximately 104 to 105. The number of nodes in the meshes used in this

thesis is lower. Papastravrou and Verfürth do use small mesh size (on the order of

103) for experiments with ε = 10−2 and also observe fluctuations in effectivity indices

comparable to the ones shown in the lower left plot of Figure 4.10. Elman et al.

[14, p.140-148] show that the effectivity index for the local Neumann estimator is

poluted by the errors the layers. When they use Shishkin meshes, which can resolve

the boundary layer, the effectivity index of the local Neumann estimator on these

special meshes is close to one.
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4.2.3 Example 1C: Interior and boundary layer

For the next example is constructed in such a way that the solution exhibits an interior

layer and a boundary layer. The analytical solution is not known. This example is

adapted from Heinkenschloss and Leykekhman [15] .

Consider the problem data Ω = (0, 1)2, θ = 47.3o, b = (cos θ, sin θ), c = 0, f = 0.

Dirichlet conditions re imposed on the entire boundary (i.e. ΓD = ∂Ω, ΓN = ∅) and

the boundary data are

gD(x1, x2) =


1 if x1 = 0 and x2 ≤ .25

1 if x2 = 0

0 else.

Figure 4.11 shows a sketch of the problem data.

Γ1

Interior layer

Boundary layer

Boundary layer

Jump in data

θ

Jump in data

Figure 4.11: Example 1C: Sketch of the problem data.

Depending on the strength of the convection (i.e. the value of ε) the solution

will have a boundary layer at the outflow region and a straight inner layer. The

;:: 
/ --------

/ / / /_ 
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SUPG solution is a good approximation of the true solution away from the inner and

the boundary layer. If the inner layer or the boundary layer are not resolved, then

the errors due the unresolved layers are propagated essentially along the direction of

convection. In this case, unlike Example 1B, the errors in the interior layer will be

propagated along the interior layer. Thus, large errors in the SUPG solution only

occur in a band around the interior layer and around the boundary layer.

Nmax = 103 Nmax = 104

Figure 4.12: Example 1C with ε = 10−4 : SUPG solution on uniform meshes with

1089 nodes (left) and 16641 nodes (right). Surfaces (top row) and top down views

(bottom row).

The SUPG solutions for Example 1C with ε = 10−4 computed on uniform meshes

x, x, 

x, x, 
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are shown in Figure 4.12. Note that the boundary layer is much steeper than the

inner layer.

Figure 4.13 shows the locally refined meshes with roughly 103 nodes (left column)

and 104 nodes (middle column). Note that all estimators initially put the emphasis

on the boundary layer; initially only a few elements are refined along the inner layer.

Once the boundary layer is sufficiently resolved, the elements along the inner layer

are refined.

Even with a locally refined mesh of approximately 104 nodes, the numerical so-

lutions still display oscillations in the boundary layer. The H1 error is dominated

by the error in the boundary layer. Therefore the Neu-H1 (and in lesser degree the

Res-H1) estimator only refines in this area, completely neglecting the inner layer.

This observation was also made by Kay and Silvester [23]. The Neu-L2 and Res-l2

estimator do pick out the interior layer, because the L2 error is not dominated by the

oscillations on the boundary layer. In this case with multiple layers, it is not clear

how to combine H1 and L2 error information in order to resolve all layers equally at

all refinement levels.
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Figure 4.13: Example 1C with ε = 10−4: Generated locally refined meshes with

Nmax = 103 (left column), Nmax = 103 (middle column), and fine grid solution (right

column). Row 1: ZZ, row 2: Res-H1, row 3: Res-L2, row 4: Neu-H1, row 5: Neu-L2.
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Chapter 5

Optimal control problems governed

by convection diffusion equations

The previous chapters focus on adaptive finite element methods for single convection

dominated diffusion equations. The goal of this thesis is to extend such methods

to optimal control problems. This chapter extends the error estimation of linear-

quadratic elliptic optimal control problem of the form

min J(y, u) =
1

2
‖y − ŷ‖2

L2(Ω) +
ω

2
‖u‖2

L2(Ω) (5.1a)

subject to

−ε∆y + b · ∇y + cy = f + u in Ω, (5.1b)

y = gD on ΓD, (5.1c)

ε
∂y

∂n
= gN on ΓN , (5.1d)

52
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where the boundary of Ω is divided such that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. In

addition to assumptions (A1) - (A4), let

(A5) ω > 0, ŷ ∈ L2(Ω).

The solution (y, u) of this problem has two components, the state y and the control

function u. This setup first introduces the optimality conditions, then addresses

the Galerkin and SUPG approximation to these equations. Finally, the three error

estimators from chapter 3 are generalized to this optimal control setting.

5.1 Optimality conditions

From now on the inner product (·, ·) is the standard L2 inner product. The weak

form of the PDE in the constraint of (5.1) for y ∈ H1
g (Ω) and u ∈ L2(Ω) is

a(y, v)− (u, v) = `(v) ∀v ∈ H1
D(Ω), (5.2)

with a(y, v) and `(v) as defined in (2.4). Define Y = H1(Ω), Y g = H1
g (Ω), Y 0 =

H1
D(Ω) and U = L2(Ω). We seek a solution (y, u) ∈ Y × U .

min J(y, u) =
1

2
‖y − ŷ‖2

L2(Ω) +
ω

2
‖u‖2

L2(Ω) (5.3a)

s.t. a(y, v)− (u, v) = `(v) ∀v ∈ H1
D(Ω). (5.3b)

Under the assumptions (A1)-(A4) stated in Section 2.1 the bilinear form a is

continuous on H1 ×H1 and H1
D-elliptic. See Lemma 2.1.1. Hence the theory in [26,

Sec. II.1] guarantees the existence of a unique solution (y, u) ∈ Y g × U of (5.3).
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Theorem 5.1.1 If Assumptions (A1)-(A5) are satisfied, the optimal control problem

(5.3) has a unique solution (y, u) ∈ Y g × U .

The theory in [26, Sec. II.1] also provides necessary and sufficient optimality con-

ditions, which can be best described using the Lagrangian

L(y, u, p) = J(y, u) + a(y, p)− (u, p)− `(p),

where p is the Lagrangian multiplier. Setting the partial Fréchet-derivatives of this

Lagrangian to zero results in the following KKT-system:

a(y, v)− (u, v) = `(v) ∀v ∈ Y 0, (5.4a)

a(v, p) + (y, v) = k(v) ∀v ∈ Y 0, (5.4b)

−(w, p) + ω(u,w) = 0 ∀w ∈ U, (5.4c)

where k(v) = (ŷ, v). These identities are commonly referred to as the state, adjoint

and gradient equation. For the specific problem (5.1) these conditions are necessary

and sufficient.

Theorem 5.1.2 If assumptions (A1) - (A5) hold, then (y, u) ∈ Y g×U solves (5.3) if

and only if there exists a p ∈ Y 0 such that the optimality conditions (5.4) are satisfied.

Furthermore, the optimality conditions (5.4) have a unique solution (y, u, p) ∈ Y g ×

U × Y 0.
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Equation (5.4b) can be interpreted as the weak form of a PDE in its own right:

−ε∆p− b · ∇p+ (c−∇ · b)p = −(y − ŷ) in Ω, (5.5a)

p = 0 on ΓD, (5.5b)

ε
∂p

∂n
+ (b · n)p = 0 on ΓN , (5.5c)

In similar fashion, equation (5.4c) corresponds to

p(x) = ω u(x). (5.6)

Hence, solving the optimality system requires the solution to the weak form of two

convection-diffusion equations and an algebraic equation.

5.2 Galerkin approximation

Let Th be a conforming triangulation of the domain Ω. Consider the following spaces

of continuous piece-wise linear functions on Th:

Yh =
{
yh ∈ H1(Ω) : yh|τ ∈ P1(τ), ∀τ ∈ Th

}
,

Y 0
h = {yh ∈ Yh : yh = 0 on ΓD} ,

Y g
h = {yh ∈ Yh : yh = gD on ΓD} ,

Uh =
{
uh ∈ L2(Ω) : uh|τ ∈ P1(τ), ∀τ ∈ Th

}
.

--
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The Galerkin approach approximates (y, u, p) by solving:

Find (yh, uh, ph) ∈ Y g
h × Uh × Y 0

h such that

a(yh, vh)− (uh, vh) = `(vh) ∀vh ∈ Y 0
h , (5.7a)

a(wh, ph) + (yh, wh) = k(wh) ∀wh ∈ Y 0
h , (5.7b)

−(qh, ph) + ω(uh, qh) = 0 ∀qh ∈ Uh. (5.7c)

Recall that such Galerkin approximations yield highly oscillatory numerical solutions

for convection dominated diffusion equations (Section 2.2). Since this system is cou-

pled, errors are no longer localized to state, adjoint or control. Hence, there is even

more reason to modify the problem in order to control the errors (especially the

gradient errors). Again, this work applies SUPG stabilization.

5.3 SUPG stabilization

This generalization of SUPG is not trivial. Collis and Heinkenschloss [13] propose

two different tactics. This work uses the optimize-then-discretize approach, which

reduces the problem to:

Find (yh, uh, ph) ∈ Y g
h × Uh × Y 0

h such that

as
h(yh, vh)− (uh, vh)

s
h = `sh(vh) ∀vh ∈ Y 0

h , (5.8a)

aa
h(ph, wh) + (yh, wh)

a
h = ka

h(wh) ∀wh ∈ Y 0
h , (5.8b)

−(qh, ph) + ω(uh, qh) = 0 ∀qh ∈ Uh. (5.8c)
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where

(uh, vh)
s
h = (uh, vh) +

∑
τ∈Th

δτ (uh, b · ∇vh)τ ,

as
h(yh, vh) =

∫
Ω

[ε∇uh · ∇vh + (b · ∇uh)vh + cuhvh]

+
∑
τ∈Th

δτ (−ε∆ph + b · ∇yh + cyh, b · ∇vh)τ ,

`sh(v) = `(vh) +
∑
τ∈Th

δτ (f, b · ∇vh)τ ,

(yh, vh)
a
h = (yh, vh) +

∑
τ∈Th

δτ (yh,−b · ∇vh)τ ,

aa
h(ph, vh) =

∫
Ω

[ε∇ph · ∇vh − (b · ∇ph)vh + (c−∇ · b)phvh]

+
∑
τ∈Th

δτ (−ε∆ph − b · ∇ph + (c−∇b)ph,−b · ∇vh)τ ,

ka
h(vh) = k(vh) +

∑
τ∈Th

δτ (ŷ,−b · ∇vh)τ .

The parameters δτ , τ ∈ Th, are defined by (2.13). The state equation (5.8a) is

stabilized using the SUPG method described for single convection-diffusion equation

(with an added term for the control). Recall that the adjoint is the weak form of (5.5).

In the optimize-then-discretize approach [13] the adjoint is discretized and stabilized

by the problem functions from this equation. This is clearly reflected by the definition

of aa
h(·, ·), ka

h(·) and (·, ·)a
h.

Recall that in an adaptive regime the error needs to be estimated after a numerical

solution of the SUPG problem is computed. Instead of a single equation, in this SUPG

problem error estimation is based on the coupled system of equations (5.4) and (5.8).
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5.4 A posteriori error estimation

The coupling of convection diffusion equations complicates error estimation. This

section explains the extension of the Zienkiewicz-Zhu, the norm-residual based and

the local Neumann problem estimator of Chapter 3. In literature, so far only one

error estimator for the SUPG approximation has been proposed [38] (which is also

extended to edge stabilization [17]), and is equivalent to the norm-residual based H1

estimator of this thesis.

5.4.1 Zienkiewicz-Zhu estimation

The ZZ estimator can be trivially generalized to the coupled system, since it only

uses local regularity information. Define the operator G by (3.2), and let the state

and adjoint estimators be

ηy
τ ≡ ‖Gy −∇yh‖L2(τ), ηp

τ ≡ ‖Gp−∇ph‖L2(Ω).

Since u is not necessarily a function in H1(Ω), it makes no sense to apply the same

approach. In this thesis ηu
τ ≡ 0. However, other approaches can certainly be used to

locally recover L2 error in u [7].

The remaining issue now is how these estimators should be combined. One option

is to add the three estimators:

ηZZ =

√∑
τ∈Th

(ηy
τ )

2 + (ηu
τ ) + (ηp

τ )
2.
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This estimator only uses regularity information of the approximation (yh, uh, ph).

None of the problem data is used, nor any information of the coupling of the system.

Therefore, just as in the previous chapters, it seems that a more advanced tool can be

developed which incorporates more properties of the optimal control problem. One

of such methods is the norm-residual based estimator.

5.4.2 Norm-residual based estimation

Obviously, one of the key concepts in this sort of error estimation is the residual of a

numerical solution (yh, uh, ph).

Definition 5.4.1 If (yh, uh, ph) is a Galerkin or SUPG approximation, then the gra-

dient equations interior residual is defined by

Rint
u (uh, ph) = −ph + ωuh,

the state equations interior residual is defined by

Rint
y (yh, uh) = f + uh − ε∆yh + b · ∇yh + cyh,

its edge residual is defined by

Redge
y (yh) =


0 if e ∈ ED

h ,

g − ε∇yh · n if e ∈ EN
h ,

ε [∇yh · n] if e ∈ EΩ
h ,

the adjoint equations interior residual is defined by

Rint
p (ph, yh) = −(yh − y0)− ε∆ph + b · ∇ph + (c−∇ · b)ph,
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and its edge residual by

Redge
p (ph) =


0 if e ∈ ED

h ,

ε∇ph · n+ (b · n)ph if e ∈ EN
h ,

ε [∇ph · n] if e ∈ EΩ
h .

Here EΩ
h are interior edges, ED

h are Dirichlet edges and EN
h are Neumann edges of Th.

Based on these residuals a norm-residual based error estimator can be formulated.

Definition 5.4.2 If (y, u, p) is the solution to (5.4), (yh, uh, ph) is the solution to

(5.8) and Rint
∗ (·, ·), Redge

∗ (·) be as Definition 5.4.1, let

ηy
τ ≡

h2
τ‖Rint

y (yh, uh)‖2
L2(Ω) +

∑
e∈E(τ)

he‖R̃edge
y (yh)‖2

L2(Ω)

1/2

,

ηu
τ ≡ ‖Rint

u (uh, ph)‖L2(τ),

ηp
τ ≡

h2
τ‖Rint

p (ph, yh)‖2
L2(Ω) +

∑
e∈E(τ)

he‖R̃edge
p (ph)‖2

L2(Ω)

1/2

,

then the norm-residual based estimator in the H1 sense is defined by [38]

ηNeu−H1
τ =

[
1

ε
(ηy

τ )
2 + (ηu

τ )2 +
1

ε
(ηp

τ )
2

]1/2

.

Let,

η̃y
τ ≡

h4
τ‖Rint

y (yh, uh)‖2
L2(Ω) +

∑
e∈E(τ)

h3
e‖R̃edge

y (yh)‖2
L2(Ω)

1/2

,

η̃p
τ ≡

h4
τ‖Rint

p (ph, yh)‖2
L2(Ω) +

∑
e∈E(τ)

h3
e‖R̃edge

p (ph)‖2
L2(Ω)

1/2

,
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then the norm-residual based estimator in the L2 sense is defined by

ηNeu−L2
τ =

[
1

ε
(η̃y

τ )
2 + (ηu

τ )2 +
1

ε
(η̃p

τ )
2

]1/2

.

The global error estimators are defined in the usual way:

ηNeu−H1 =

(∑
τ∈Th

(
ηNeu−H1

τ

)2)1/2

, ηNeu−L2 =

(∑
τ∈Th

(
ηNeu−L2

τ

)2)1/2

.

Ideally, it would be desirable obtain bounds in the sense of (3.1) for this estimator.

Such an upper bound exists for the H1 estimator and is shown in Theorem 5.4.3, a

lower bound has not been proved to date.

Theorem 5.4.3 [38, Th.5.5] If (y, u, p) is the solution to (5.4), (yh, uh, ph) is the

solution to (5.8) and ηNeu−H1 is defined by Definition 5.4.2, then there exists C12 > 0

such that

‖y − yh‖2
ε + ‖u− uh‖2

L2(Ω) + ‖p− ph‖2
ε ≤ C12

(
ηNeu−H1

)2
.

Proof: Given v ∈ U , let y[v] be the unique solution to

a(y[v], w)− (v, w) = `(w) ∀w ∈ Y 0. (5.9)

The optimal control problem can now be viewed as an unconstrained optimization

problem:

min
v∈U

Ĵ(v) ≡ J(y[v], v).

This implicit formulation opens the door to further analysis. For given v, and y[v]

defined by (5.9) and let p[v] be the solution to

a(w, p[v]) + (y[v], w) = k(w) ∀w ∈ Y 0. (5.10)
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Let u be the optimal control, then (y, u, p) = (y[u], u, p[u]) is the solution to (5.4).

The gradient of the objective functions Ĵ(v) satisfies

(∇Ĵ(v), w) = −(w, p[v]) + α(v, w) ∀w ∈ U. (5.11)

Consider the following for any w ∈ U

(∇Ĵ(u)−∇Ĵ(uh), w) = (∇Ĵ(u), w)− (∇Ĵ(uh), w),

= −(w, p) + ω(u,w) + (w, p[uh])− ω(uh, w),

= (w, p[uh]− p) + ω(u− uh, w).

Setting w = u− uh leads to

(∇Ĵ(u)−∇Ĵ(uh), u− uh) = (u− uh, p[uh]− p) + ω(u− uh, u− uh), (5.12)

= (u− uh, p[uh]− p) + ω‖u− uh‖2
L2(Ω). (5.13)

(u− uh, p[uh]− p) = (u, p[uh]− p)− (uh, p[uh]− p),

= a(y, p[uh]− p)− `(p[uh]− p)

− a(y[uh], p[uh]− p) + `(p[uh]− p),

= a(y[uh]− y, p[uh]− p),
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by equation (5.9). Furthermore equation (5.10) yields

(u− uh, p[uh]− p) = a(y − y[uh], p[uh])− a(y − y[uh], p),

= k(y − y[uh]) + (y − y[uh], y)

− k(y − y[uh])− (y − y[uh], y[uh]),

= (y − y[uh], y − y[uh]) = ‖y − y[uh]‖2 ≥ 0.

The optimality condition of the unconstrained optimization problem, ∇Ĵ(u) = 0,

reduces equation (5.13) to

ω‖u− uh‖2
L2(Ω) ≤ (∇Ĵ(u)−∇Ĵ(uh), u− uh),

= −(∇Ĵ(uh), u− uh),

= (u− uh, p[uh])− ω(uh, u− uh),

= (p[uh], u− uh)− ω(uh, u− uh) + (ph, u− uh)− (ph, u− uh),

= (p[uh]− ph, u− uh) + (ph − ωuh, u− uh).

Invoking Young’s inequality with parameter γ > 0 yields:

ω‖u− uh‖2
L2(Ω) ≤

1

2γ
‖ph − p[uh]‖2

L2(Ω) +
γ

2
‖u− uh‖2

L2(Ω)

+
1

2γ
‖ph − ωuh‖2

L2(Ω) +
γ

2
‖u− uh‖2

L2(Ω).

Since γ is an arbitrary positive constant, set γ = ω/2:

ω2

2
‖u− uh‖2

L2(Ω) ≤ ‖ph − p[uh]‖2
L2(Ω) + (ηu)2. (5.14)
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Consider the following for v ∈ Y

a(v, p[uh]− ph) = −(y[uh]− y0, v)− a(v, ph),

=

∫
Ω

(−y[uh] + y0 + yh − yh)v −
[∫

Ω

ε∇v · ∇ph + (b · ∇v)ph + cvph

]
,

=

∫
Ω

(yh − y[uh])v −
[∫

Ω

(yh − y0) + ε∇v · ∇ph + (bph) · ∇v + cvph

]
.

Applying integration by parts:

a(v, p[uh]− ph) =

∫
Ω

(yh − y[uh])v −
∑
τ∈Th

[∫
τ

(yh − y0)− ε∆phv −∇(bph)v + cvph

+

∫
∂τ

ε∇ph · n v + (bph) · n v
]

=

∫
Ω

(yh − y[uh])v −
∑
τ∈Th

[∫
τ

(yh − y0)− ε∆phv − b · ∇phv + (c−∇ · b)phv

+

∫
∂τ

ε∇ph · n v + (b · n)phv

]
,

=

∫
Ω

(yh − y[uh])v +
∑
τ∈Th

∫
τ

Rint
p (ph, yh)v +

∑
e∈Eh

∫
e

Redge
p (ph, yh)v.

Section 3.2 has shown how the right hand side of this equation can be bounded.

Setting v = p[uh]− ph yields

a(p[uh]− ph, p[uh]− p) ≤ (y[uh]− y, p[uh]− ph) + ‖p[uh]− ph‖ε η
p.

≤ ‖y[uh]− y‖ε‖p[uh]− ph‖ε +
C10√
ε
‖p[uh]− ph‖ε η

p.

The coercivity of a(·, ·) and Young’s inequality with γ > 0 reduce this equation to:

α‖p[uh]− ph‖2
ε ≤

γ

2
‖p[uh]− ph‖2

ε +
1

2γ
‖y[uh]− yh‖2

ε

+
γ

2
‖p[uh]− ph‖2

ε +
C2

10

2γε
(ηp)2 .
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Setting γ = α/2 yields

‖p[uh]− ph‖2
ε ≤

2

α2
‖y[uh]− yh‖2

ε +
2C2

10

(α2ε)
(ηp)2. (5.15)

A similar argument holds for y[uh]− yh:

a(y[uh]− yh, v) = l(v) + (uh, v)− a(yh, v).

Section 3.2 shows how this equation can be transformed to:

a(y[uh]− yh, v) =
∑
τ∈Th

∫
τ

Rint
y (yh, uh)v +

∑
e∈Eh

∫
e

Redge
y (yh, uh)v,

≤ C12√
ε
‖y[uh]− yh‖εη

y.

Hence, by coercivity of a(·, ·)

‖y[uh]− y‖2
ε ≤

C2
12

α2ε
(ηy)2 . (5.16)

Combining equations (5.14), (5.15) and (5.16)

‖u− uh‖2
L2(Ω) ≤ C12

[
1

ε
(ηy)2 + (ηu)2 +

1

ε
(ηp)2

]
, (5.17)

with

C12 =
1

α2ω2
max

{
C2

10,
2C2

11

α2

}
.

Note that:

a(y − y[uh], v) = (u− uh, v) ∀v ∈ Y 0
h , (5.18)

a(w, p− p[uh]) = −(y − y[uh], w) ∀w ∈ Y 0
h . (5.19)
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If v = y − y[uh] and w = p− p[uh], then there exists a constant C12 such that:

‖p− p[uh]‖2
ε ≤ ‖y − y[uh]‖2

ε ≤ C12‖u− uh‖2
L2(Ω).

Therefore the following holds:

‖y − yh‖2
ε ≤ ‖y − y[uh‖2

ε + ‖y[uh]− yh‖2
ε ≤ C13

(
ηNeu−H1

)2
, (5.20a)

‖p− ph‖2
ε ≤ ‖p− p[uh‖2

ε + ‖p[uh]− ph‖2
ε ≤ C14

(
ηNeu−H1

)2
. (5.20b)

Equations (5.17) and (5.20) result to the final bound:

‖y − yh‖2
ε + ‖u− uh‖2

L2(Ω) + ‖p− ph‖2
ε ≤ C12

(
ηNeu−H1

)2
.

2

Remark 5.4.4 A similar bound as Theorem 5.4.3 for the Neu-L2 estimator has not

been proven to date.

In this bound constant C12 relies heavily on ω, α, C10, C11, where these last con-

stant on their turn depend on the problem. Combining all these constants explicitly

in C12 neglects many, sometimes vital, properties of the error. In Chapter 3 this prob-

lem was fixed by setting up a different estimator based on local Neumann problems.

This technique can be generalized to the optimal control context.

5.4.3 Local Neumann estimation

In order to derive a local Neumann estimator, consider a slightly different approach

from the previous section. If (y, u, p) is the the solution to the weak form, (yh, uh, ph)
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is the SUPG approximation and the error is defined by (ey, eu, ep) = (y − yh, u −

uh, p− ph), then for v ∈ H1
D(Ω)

a(ey, v) = a(y, v)− a(yh, v),

= `(v) + (u, v)− a(yh, v) + (uh − uh, v),

= (eu, v) + `(v) + (uh, v)− a(yh, v),

= (eu, v) +
∑
τ∈Th

∫
τ

Rint
y (yh, uh)v +

∑
e∈Eh

∫
e

Redge
y (yh)v.

The same principle can be applied to the error of the adjoint and w ∈ H1
D(Ω):

a(w, ep) = a(w, p)− a(w, ph),

= k(v)− (y, w)− a(w, ph) + (yh − yh, w),

= −(ey, w) + k(w)− (yh, w)− a(w, ph),

= −(ey, w) +
∑
τ∈Th

∫
τ

Rint
p (ph, yh)w +

∑
e∈Eh

∫
e

Redge
p (ph)w.

Finally, a similar bound holds for the control error, let q ∈ L2(Ω):

ω(eu, q) = ω(u, q)− ω(uh, q),

= (p, q)− ω(uh, q) + (ph − ph, q),

= (p− ph, q) + (ph − ωuh, q),

= (ep, q) +
∑
τ∈Th

∫
τ

Rint
u (uh, ph)q.

These three expressions form the heart of the local Neumann estimator.
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Definition 5.4.5 Let Qτ ⊂ H1(τ), Sτ ⊂ L2(τ) be finite dimensional, let (êy
τ , ê

u
τ , ê

p
τ ) ∈

Qτ × Sτ ×Qτ be the solution of

a(ey
τ , v)τ − (eu

τ , v)τ =

∫
τ

Rint
y (yh, uh)v +

∑
e∈E(τ)

∫
e

R̃edge
y (yh)v, ∀v ∈ Q0

τ ,

(ey
τ , w)τ + a(w, ep

τ )τ =

∫
τ

Rint
p (ph, yh)w +

∑
e∈E(τ)

∫
e

R̃edge
p (ph)w, ∀w ∈ Sτ ,

ω(eu
τ , q)τ − (ep

τ , q)τ =

∫
τ

Rint
u (uh, ph)q, ∀q ∈ Q0

τ .

then

ηy
τ ≡ ‖êy

τ‖H1(Ω), ηu
τ ≡ ‖êu

τ‖L2(Ω) and ηp
τ ≡ ‖êp

τ‖H1(Ω),

and the element-wise local Neumann estimator in H1 is defined by

ηNeu−H1 =
[
(ηy)2 + (ηu)2 + (ηp)2]1/2

If

ηy
τ ≡ ‖êy

τ‖L2(Ω), ηu
τ ≡ ‖êu

τ‖L2(Ω) and ηp
τ ≡ ‖êp

τ‖L2(Ω).

then the element-wise local Neumann estimator in L2 is defined by

ηNeu−L2 =
[
(ηy)2 + (ηu)2 + (ηp)2]1/2

The global estimators are defined by

ηNeu−H1 =

(∑
τ∈Th

(
ηNeu−H1

τ

)2)1/2

, ηNeu−L2 =

(∑
τ∈Th

(
ηNeu−L2

τ

)2)1/2

.

Solving the local Neumann problem in Definition 5.4.5 relies on finding subspaces Qτ

and Sτ . This work uses the bubble functions {ψi} defined in (3.5) as finite basis for
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both spaces. This leads to a 12× 12 system, which needs to be solved for each single

element.



Chapter 6

Numerical results II:

Linear-quadratic elliptic optimal

control problems

This section contains numerical results on AFEMs for linear-quadratic elliptic optimal

control problems governed by convection dominated diffusion equations.

70
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6.1 Notes on numerical experiments

The SUPG discretized optimality conditions (5.8) are equivalent to

Find (yh, ph) ∈ Y g
h × Y 0

h such that

as
h(yh, vh)−

1

ω
(ph, vh)

s
h = `sh(vh) ∀vh ∈ Y 0

h , (6.1a)

aa
h(ph, wh) + (yh, wh)

a
h = ka

h(wh) ∀wh ∈ Y 0
h , (6.1b)

and setting

uh =
1

ω
ph. (6.1c)

Hence, the interior residual of the gradient equation is Rint
u (uh, ph) = 0. In the norm-

residual based estimators, defined in Section 5.4.2, this implies ηu
τ = 0 for all τ ∈ Th.

In the Zienkiewicz-Zhu estimator defined in Section 5.4.1 we set ηu
τ = 0, for all τ ∈ Th.

Hence the Zienkiewicz-Zhu estimator and the norm-residual based estimators only use

ηy
τ and ηp

τ to estimate the error.

The local Neumann estimator is also simplified by solving the system in this way.

Since Rint
u (uh, ph) = 0 and the since the true control and adjoints and the SUG

computed control and adjoint satisfy ωu = p and ωuh = ph, respectively, the third

equation in the Neumann problem in Definition 5.4.5 is true and the local Neumann

estimator also yields ηu
τ = 0, for all τ ∈ Th.

Note that ηu
τ = 0 in general would not hold if control constraints are present or if

the discretized-then-optimize approach is used [13].
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6.2 Numerical examples

6.2.1 Example 2A: Boundary layer

This example is based on Example 1A. Recall function η(x) defined in (4.1). Now

consider µ(x) = η(1− x):

µ(x) = 1− x− exp(−x/ε)− exp(−1/ε)

1− exp(−1/ε)
.

Consider the same problem as in 1A with Ω = [0, 1]2, θ = 45o, b = (cos θ, sin θ)T and

c = 0. Let the state and adjoint be defined by

y(x1, x2) = η(x1) η(x2),

p(x1, x2) = µ(x1) µ(x2).

Hence, the state is the same as the PDE solution in Example 1A. The control is

defined by (5.6):

u(x1, x2) =
1

ω
p(x1, x2) =

1

ω
µ(x1) µ(x2).

Hence, by the constraint in (5.1):

f(x1, x2) = −u(x1, x2)− ε∆y(x1, x2) + b ·∆y(x1, x2).

Since c = ∇ · b = 0, equation (5.5) yields

ŷ(x1, x2) = y(x1, x2)− ε∆p(x1, x2)− b ·∆p(x1, x2).

The true state is shown in Figure 4.1 for ε = 10−1, 10−2, 10−3. Note that the control

and adjoint are merely mirrored (and scaled by ω) versions of the state. Therefore

the plots are omitted in this section.
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The difference between Example 1A and this example is that the state exhibits

a boundary layer at the boundary where x1 = 1 or x2 = 1, whereas the adjoint and

the control exhibit a boundary layer at the boundary where x1 = 0 or x2 = 0. Both

the boundary layer for the state and the adjoint/control need to be resolved. For

example, if the boundary layer in the state is not resolved, then the coupling in the

optimality conditions, causes this error to be propagated though the adjoint equation

into the domain. This is very different from the situation when the state equation is

solved alone for fixed u as in Example 1A.

Let ε = 10−3 and ω = 1, Figure 6.1 shows the generated mesh when the refinement

is driven by the Res-H1 estimator. All refinement is done around the boundary layers

of the state and the control. Hence, the error indicator is able to pick up both

boundary layers, and combine them to an effective estimate.

Since boundary layer occur near the entire boundary, for given number of nodes

the the mesh-sizes around the layers are bigger than in Example 1A. In the single

convection equation case, an estimator could put all its focus on the layer for the

state equation. In the optimal control case, it has to distribute the refinement over

the the layer for the state y as well as over the the layer for the adjoint p. Hence,

each layer will (ideally) only get half the refinements.

Figures 6.2 and 6.3 show cross sections of the state and the control along the line

x1 = x2 for ε = 10−3 and ω = 1 and various refinement levels. The upper left plots in

both figures correspond to the coarsest mesh and show that an unresolved boundary
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Figure 6.1: Example 2A with ω = 1 and ε = 10−3: Locally refined mesh (Nmax =

10000) driven by Res-H1 estimator.

layer in the control/adjoint will pollute the state. If we compare the upper left plot

in Figure 6.2 with the upper left plot in Figure 4.5 we see that the error in the state

for x1 = x2 � 1 is much smaller in the case of a fixed u (Figure 4.5) as it is in the

optimal control case (Figure 6.2).

Recall the cross sections of the solution along the convection flow (on x1 = x2)

in Figure 4.5. Evident from this figure is that spurious oscillations occur in a small

region around the boundary layer when the layer is not resolved. Figures 6.2 and 6.3

are the same cross sections, only now of respectively the state and control. Also in this

coupled system the spurious oscillations occur around the boundary layer. For the

coarsest meshes, there is also a visible error in the interior. The errors in the boundary

layers are propagated into the interior due to the coupling with an equation with

convection in opposite direction. Once the boundary layers are sufficiently resolved,

the oscillations are reduced, and no oscillations are propagated, which also results in

a higher accuracy in the interior.

,., 
0, ., 

[level.nodes)= [ 29, 10413] 
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Figure 6.2: Example 2A with ε = 10−3 and ω = 1: Cross section of the state along

the constant convection flow after Nmax = 200, 400, 800, 1600, 3200, 6400 (one value

of Nmax from left to right). Displayed lines are the true solution (black), the solution

with uniform refinement (red), the local refinement solution (blue) and the exact

solution (black).

•===-------------~ 

J --=4 

.. 

·~ ,.~ 

''===-------------~ 

,~L--=1 

.. 

·~ 
,.~ 

·~ ,.~ 

. . 

·~ ,.~ 

.. 



76

Figure 6.3: Example 2A with ε = 10−3 and ω = 1: Cross section of the control

along the constant convection flow after Nmax = 200, 400, 800, 1600, 3200, 6400 (one

value of Nmax from left to right). Displayed lines are the true solution (black), the

solution with uniform refinement (red), the local refinement solution (blue) and the

exact solution (black).
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Figure 6.4: Example 2A with ω = 1 and ε = 10−3: Global errors in L2 sense of state

(left) and control (right) of solutions uniform (black) and local (blue) refinement

driven by Res-H1.

Figure 6.4 shows how the global L2 error is influenced by the propagated errors.

The global L2 initially does not decrease monotonically. Only when the layers are

sufficiently resolved do the errors decrease monotonically. Since in the optimal control

case two layers need to be resolved, this seems to agree with the observations for the

solution of the single equation in Example 1A.

6.2.2 Example 2B: Circular and straight inner layer

Hinze et al. use this example in their analysis [17] of the norm-residual based estimator

in combination with an edge stabilization technique. The problem data are given by

Ω = (0, 1)2,

b = (2, 3), c = 1, ΓD = ∂Ω, ΓN = ∅.

Error in L \n) norm 
10' ~---~----------------~ 

Error in L
2(!"l) norm 

10' ~--------------------~ 

10' 10' 

10~ 10~ 

10~--------~ ----- ---~---- 10~-------------- ---~---~ 
10D 1~ 1i 103 1~ 1~ 1~ 101 1~ 1~ 1t 1~ 

number of nodes in mesh number of nodes in mesh 
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The optimal state is

y(x1, x2) =
2

π
arctan

(
1√
ε

[
−1

2
x1 + x2 −

1

4

])
,

which is a function with a straight inner layer which needs to be resolved. The

corresponding adjoint is given by

p(x1, x2) = 16x1(1− x1)x2(1− x2)

×

(
1

2
+

1

π
arctan

[
2√
ε

(
1

16
−
(
x1 −

1

2

)2

−
(
x2 −

1

2

)2
)])

.

(and corresponds to the function in Example 1B). The optimal control is given by

u(x1, x2) =
1

ω
p(x1, x2).

The Dirichlet data yD, the right hand side f and the observation ŷ are computed

from (5.1d) and (5.5) respectively. In particular

f(x1, x2) = −u(x1, x2)− ε∆y(x1, x2) + 2
∂

∂x1

y(x1, x2) + 3
∂

∂x2

y(x1, x2) + y(x1, x2),

ŷ(x1, x2) = y(x1, x2)− ε∆p(x1, x2)− 2
∂

∂x1

p(x1, x2)− 3
∂

∂x2

p(x1, x2) + p(x1, x2).

Figure 6.5 shows the optimal state and adjoints for ε = 10−2, 10−4, 10−6.

The state and the adjoint exhibit inner layers. If these are not resolved, then errors

in these layer are propagated along the directions of convection into the domain.

Unlike in the case of single equation, the state equation propagates errors along

the direction b, whereas the adjoint equation propagates errors along the direction

−b. Since both equations are coupled, the state, the control, and the adjoint are



79

ε
=

10
−

2
ε

=
10

−
4

ε
=

10
−

6

F
ig

u
re

6.
5:

E
x
am

p
le

2B
:
S
u
rf

ac
es

of
th

e
ex

ac
t

st
at

e
(t

op
ro

w
)

an
d

ad
jo

in
t

(b
ot

to
m

ro
w

)
fo

r
ε

=
10

−
2
,1

0−
4
,1

0−
6

(fi
x
ed

ε
fo

r
ea

ch
co

lu
m

n
).

al
l

p
ol

lu
te

d
b
y

er
ro

rs
p
ro

p
ag

at
es

al
on

g
±
b.

T
h
is

ca
n

b
e

cl
ea

rl
y

se
en

in
F
ig

u
re

6.
6,

w
h
ic

h
sh

ow
s
th

e
n
u
m

er
ic

al
so

lu
ti

on
s
on

u
n
if
or

m
m

es
h
es

(1
29
×

12
9

n
o
d
es

)
fo

r
d
iff

er
en

t

va
lu

es
of
ε

an
d

fi
x
ed

ω
=

0.
1.

In
th

e
ap

p
ro

x
im

at
io

n
s

w
it

h
ε

=
10

−
6

th
e

er
ro

rs
at

th
e

in
n
er

la
ye

rs
ar

e
cl

ea
rl

y
p
ro

p
ag

at
ed

in
th

e
co

n
ve

ct
io

n
b

an
d

op
p
os

it
e

d
ir
ec

ti
on

−
b.

T
h
is

sh
ou

ld
b
e

co
n
tr

as
te

d
w

it
h

th
e

so
lu

ti
on

of
a

si
n
gl

e
eq

u
at

io
n

sh
ow

n
in

F
ig

u
re

4.
8,

w
h
er

e
th

e
er

ro
rs

ar
ou

n
d

th
e

ci
rc

u
la

r
in

n
er

la
ye

r
w

er
e

p
ro

p
ag

at
ed

in
to

th
e

in
te

ri
or

on
ly

in
th

e
d
ir
ec

ti
on

of
th

e
co

n
ve

ct
io

n
b.

A
s

w
e

h
av

e
al

re
ad

y
se

en
in

E
x
am

p
le

1B
,
th

es
e

p
ro

p
ag

at
ed

er
ro

rs
m

ak
e

it
d
iffi

cu
lt

fo
r

er
ro

r
es

ti
m

at
or

s
to

lo
ca

li
ze

la
ye

rs
.

F
ig

u
re

6.
7

sh
ow

s
th

e
lo

ca
ll
y

re
fi
n
ed

m
es

h
es

ge
n
er

at
ed

b
y

th
e

fi
ve

ge
n
er

al
iz

ed
er

ro
r

es
ti

m
at

or
s.

F
or

h
ig

h
va

lu
es

of
ε

al
l

er
ro

r

es
ti

m
at

or
s

se
em

to
p
ic

k
ou

t
th

e
la

ye
rs

re
as

on
ab

ly
w

el
l.

H
ow

ev
er

,
fo

r
sm

al
l
ε

th
ey

I : 

I • . \° < 

): 
// .· 

' ; / : 
~ - = • "' .! . :; ... 

\: . 

~· 

\: . 

~· 

\: . 

~· 
: . 



80

ε = 10−2 ε = 10−4 ε = 10−6

Figure 6.6: Example 2B with ω = 0.1 and ε = 10−2, 10−4, 10−6: Computed state (top

row) and control (bottom row) on a uniform mesh of 129 × 129 nodes (fixed ε per

column).

refine the mesh also in the regions that are polluted by the transport of the error and

hence tackle the symptoms rather than the cause of the errors.

Hinze, Yan and Zhou [17] obtain visually better meshes for ε = 10−4. They

incorporate edge stabilization instead of SUPG, which could be the source of this

difference. Furthermore, their total number of nodes is smaller than the ones used

in the mehses shown in Figure 6.7. Yan and Zhou [38] use SUPG stabilization, but

they use two separate meshes, one for the state, the other for the adjoint and control.

The mesh refinement for the state is driven by ηy and the mesh refinement for the

adjoint/control is driven by ηp and ηu. Although this seems to generate proper meshes
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Figure 6.7: Example 2B with ω = 0.1 and ε = 10−2, 10−4, 10−6 : Generated locally

refined meshes with Nmax = 12000 (fixed ε for each column). Row 1: ZZ-meshes, row

2: Res-H1 meshes, row 3: Res-L2 meshes, row 4: Neu-H1 meshes, row 5: Neu-L2

meshes.
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ε = 10−2 ε = 10−4 ε = 10−6

Figure 6.8: Example 2B with ω = 0.1 and ε = 10−2, 10−4, 10−6: Errors of state

(top row) and control (bottom row) uniform and local refinement using ZZ, Res-H1,

Res-L2, Neu-H1 and Neu-L2 estimator (fixed ε for each column), measured in L2(Ω)

norm.

for the examples considered in [38], it implicitly assumes a more decoupled system.

6.2.3 Example 2C: Single straight inner layer

The next example is taken from Heinkenschloss and Leykekhman [15]. Let

Ω = (0, 1)2, b = (1, 0), c = 0,
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State Control

Figure 6.9: Example 2C with ω = 10−2 and ε = 10−7: Exact state (left) and exact

control (right).

and let the true state, adjoint and control be given by

y(x1, x2) = (1− x1)
3 arctan

(
x2 − .5

ε

)
,

p(x1, x2) = x1(1− x1)x2(1− x2),

u(x1, x2) =
1

ω
p(x1, x2).

We set ΓD = ∂Ω and compute gD, f , ŷ such that (5.1d) and (5.5) are satisfied. Figure

6.9 shows the exact state and control for ε = 10−7 and ω = 10−2. The state has a

sharp inner layer, but the control is very smooth.

Figure 6.10 shows the meshes generated by the five generalized error estimators.

The L2 global errors of the computed state and control are given in Figure 6.11. In

this case the Neu-L2 estimator reduces the global error in the state the fastest.

Note that all global control errors for adaptively refined meshes are higher than

for uniform refinement. This polynomial solution does not have localized behavior

x, x, 
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Figure 6.10: Example 2C with ω = 10−2 and ε = 10−7: Generated locally refined

meshes, (Nmax = 12000). In order: ZZ, Res-H1, Res-L2, Neu-H1 and Neu-L2 meshes.

and therefore the L2 error in the control is reduced the most when (close to) uniform

refinement is applied.

6.2.4 Example 2D: Inner and boundary layer

This example is an extension of Example 1C and is taken from Heinkenschloss and

Leykekhman [15]. The problem data are Ω = (0, 1)2,

ε = 10−4, θ = 47.3o, b = (cos θ, sin θ), c = 0, f = 0.

1~,, ... ,a,. 12?06 J 
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Figure 6.11: Example 2C with ω = 10−2 and ε = 10−7: Global errors of uniform and

local refinement in the state (left) and control (right) in L2 sense.

We apply Dirichlet conditions on the entire boundary (i.e. ΓD = ∂Ω, ΓN = ∅) and

the Dirichlet boundary data are

gD(x1, x2) =


1 if x1 = 0 and x2 ≤ .25

1 if x2 = 0

0 else.

Recall the physical setup of the uncontrolled problem in Figure 4.11. In the optimal

control case we define the desired state to be

ŷ(x1, x2) = 1.

Hence the optimization problem seeks (y, u) such that 1
2
‖y − 1‖2

L2(Ω) + ω
2
‖u‖2

L2(Ω) is

minimal. Since f = 0 the control can be seen as the sole forcing term to this system.

The penalty parameter ω controls how ‘big’ u is allowed to be. The smaller ω the

larger ‖u‖2
L2(Ω).
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ω = 1 ω = 10−2 ω = 10−4

Figure 6.12: Example 2D with ω = 1, 10−2, 10−4 and ε = 10−4: Computed state (top

2 rows) and control (bottom 2 rows) on uniform meshes of 129× 129 nodes (fixed ω

per column).
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The exact optimal state, control and adjoint for this problem are not known. The

computed solutions on a uniform grid (129 × 129) for ω = 1, 10−2, 10−4 are shown

in Figure 6.12. The computed state exhibits a sharp boundary layer, as seen in

Example 1C. For small ω the control (and therefore the adjoint) is concentrated in

a small region near the boundary. For small ω the state is equal to one, except

for a small region around the boundary where y = 0. The inner layer in the state

disappears, but the boundary layer become more pronounced.

Figures 6.13, 6.14 and 6.15 show the refined meshes for ω = 1, 10−2, 10−4 respec-

tively. For large ω, the mesh refinement has to resolve the boundary layer in the

state as well as the interior layer. For small ω the mesh refinement has to resolve the

boundary layers.

Except for the ZZ estimators, all estimators seem to locate the boundary layers

fairly well. However, the interior layer is picked up better by the L2 estimators. This

is a result of all the spurious oscillations around the boundary layers of the state

and the control. The oscillations dominate the H1 norm, and therefore also their

estimators.
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Figure 6.13: Example 2D with ω = 1 and ε = 10−4: Computed locally refined mesh

(left column), state (middle column) and control (right column) using Nmax = 12000.

From top to bottom the ZZ, Res-H1, Res-L2, Neu-H1 and Neu-L2 estimator.

~l- 125, 139~J 
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Figure 6.14: Example 2D with ω = 10−2 and ε = 10−4: Computed locally refined mesh

(left column), state (middle column) and control (right column) using Nmax = 12000.

From top to bottom the ZZ, Res-H1, Res-L2, Neu-H1 and Neu-L2 estimator.
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Figure 6.15: Example 2D with ω = 10−4 and ε = 10−4: Computed locally refined mesh

(left column), state (middle column) and control (right column) using Nmax = 12000.

From top to bottom the ZZ, Res-H1, Res-L2, Neu-H1 and Neu-L2 estimator.

·,-. ... --~-.. u -....... .... #_ ... 
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In conclusion, solutions to linear-quadratic elliptic optimal control problems gov-

erned by convection diffusion equations typically exhibit layers in state and control.

Locating these regions, and combining information on multiple layers is not a straight-

forward task. Though several estimators produce satisfying meshes in some degree,

it appears that gaining more control over the spurious oscillations could result more

accurate numerical solutions.



Chapter 7

Conclusions

Solutions to convection-diffusion equations typically exhibit small regions with steep

gradients, so-called inner or boundary layers. The numerical solution of these prob-

lems using finite elements requires the introduction of stabilization terms, such as the

SUPG stabilization. Although SUPG stabilized FEM produces significantly better

solutions at moderate mesh sizes than standard Galerkin FEM, the numerical solu-

tion may still exhibit oscillations in a small neighborhoods around the layers when

those are not resolved. These errors can be propagated downwind from the layer by

the convection and can cause significant loss of accuracy of the numerical solution.

Therefore this thesis uses SUPG stabilization in conjuncture with local mesh refine-

ment. The goal of the local refinement is to resolve layers, so no oscillations occur

and no errors can be propagated.

This work compared the adaptive finite element method driven by the ZZ, the

92
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norm-residual based and the local Neumann error estimator. Because of the error

propagation, all estimators place elements away from the layers. Though local Neu-

mann estimators appeared to work better in resolving a single inner or boundary

layer, it lacked the capacity to sufficiently resolve multiple layers at the same time.

Hence, this thesis has shown that among these estimators there is no clear favorite

for the single equation case.

Solving linear-quadratic convection dominated elliptic optimal control problems is

more complicated since it requires the solution of a coupled system of two convection

diffusion equations and an algebraic equation. The convection terms in the convection

diffusion equations have opposite signs. The solution to this coupled system, with

state, adjoint and control components, typically exhibits multiple layers. Again,

when applying SUPG stabilization the solution contains spurious oscillations in a

small band around the layers, unless these layers are resolved. Since the two PDEs

have convection in opposite direction, the spurious oscillations are propagated down-

and upwind. This work illustrated this effect by computation. Hence, in this coupled

setting it is even more important to resolve the layers.

This work compared adaptive refinements driven by the same error estimators as

in the single equation case. In the literature only the norm-residual based estimator

has been extended to the optimal control setting. This thesis reviewed this theory,

and proposed a generalization for the ZZ and local Neumann estimator. Though a

solid mathematical justification is still needed, this work showed that the latter ap-
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proach can compete with the norm-residual based estimator. Similar to the single

equation case, local Neumann estimators are able to resolve layers better, however,

they struggle when multiple layers are present. As expected there is not a single fa-

vorite estimator. Hence, choosing an error indicator is also highly problem dependent

in the optimal control setting.

Results shown in this work indicate that there is still much work to be done in

this field. As mentioned, the local Neumann estimator introduced in this work still

needs to be justified by proving error bounds (3.1). Moreover, this estimator can

be improved by incorporating more problem features in the local Neumann prob-

lem. Another option is to solve the local problem using SUPG stabilization rather

than Galerkin alone. Goal-oriented error estimation [4] is another technique for error

indication which is worth exploring.

The solution components, state, control, and adjoint, often have different scales

and exhibit layers in different parts of the domain. Therefore, error estimators that

estimate the error for all three solution components jointly need to scale the individual

component error estimators carefully, which is difficult to do. Alternatively, one can

thing of using different meshes for the state, the control, and the adjoint and refine

them based on error estimates for the individual components. While some work in

this area exists, the advantages and disadvantages needs to be explored more.

This thesis uses continuous finite element methods in conjuncture with SUPG sta-

bilization because it is widely used in applications. However, there are other methods
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which could yield good results. Different stabilization methods exists. Moreover,

discontinuous Galerkin (DG) methods ([16], [31]) could be used as well.
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