Absolutely continuous spectrum for CMV matrices with small quasi-periodic Verblunsky coefficients
dc.citation.firstpage | 6093 | en_US |
dc.citation.issueNumber | 9 | en_US |
dc.citation.journalTitle | Transactions of the American Mathematical Society | en_US |
dc.citation.lastpage | 6125 | en_US |
dc.citation.volumeNumber | 375 | en_US |
dc.contributor.author | Li, Long | en_US |
dc.contributor.author | Damanik, David | en_US |
dc.contributor.author | Zhou, Qi | en_US |
dc.date.accessioned | 2022-09-29T15:06:24Z | en_US |
dc.date.available | 2022-09-29T15:06:24Z | en_US |
dc.date.issued | 2022 | en_US |
dc.description.abstract | We consider standard and extended CMV matrices with small quasi-periodic Verblunsky coefficients and show that on their essential spectrum, all spectral measures are purely absolutely continuous. This answers a question of Barry Simon from 2005. | en_US |
dc.identifier.citation | Li, Long, Damanik, David and Zhou, Qi. "Absolutely continuous spectrum for CMV matrices with small quasi-periodic Verblunsky coefficients." <i>Transactions of the American Mathematical Society,</i> 375, no. 9 (2022) American Mathematical Society: 6093-6125. https://doi.org/10.1090/tran/8696. | en_US |
dc.identifier.digital | 2102-00586 | en_US |
dc.identifier.doi | https://doi.org/10.1090/tran/8696 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/113426 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.rights | This pre-print is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.title | Absolutely continuous spectrum for CMV matrices with small quasi-periodic Verblunsky coefficients | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | pre-print | en_US |
Files
Original bundle
1 - 1 of 1