Absolutely continuous spectrum for CMV matrices with small quasi-periodic Verblunsky coefficients

dc.citation.firstpage6093en_US
dc.citation.issueNumber9en_US
dc.citation.journalTitleTransactions of the American Mathematical Societyen_US
dc.citation.lastpage6125en_US
dc.citation.volumeNumber375en_US
dc.contributor.authorLi, Longen_US
dc.contributor.authorDamanik, Daviden_US
dc.contributor.authorZhou, Qien_US
dc.date.accessioned2022-09-29T15:06:24Zen_US
dc.date.available2022-09-29T15:06:24Zen_US
dc.date.issued2022en_US
dc.description.abstractWe consider standard and extended CMV matrices with small quasi-periodic Verblunsky coefficients and show that on their essential spectrum, all spectral measures are purely absolutely continuous. This answers a question of Barry Simon from 2005.en_US
dc.identifier.citationLi, Long, Damanik, David and Zhou, Qi. "Absolutely continuous spectrum for CMV matrices with small quasi-periodic Verblunsky coefficients." <i>Transactions of the American Mathematical Society,</i> 375, no. 9 (2022) American Mathematical Society: 6093-6125. https://doi.org/10.1090/tran/8696.en_US
dc.identifier.digital2102-00586en_US
dc.identifier.doihttps://doi.org/10.1090/tran/8696en_US
dc.identifier.urihttps://hdl.handle.net/1911/113426en_US
dc.language.isoengen_US
dc.publisherAmerican Mathematical Societyen_US
dc.rightsThis pre-print is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.titleAbsolutely continuous spectrum for CMV matrices with small quasi-periodic Verblunsky coefficientsen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpre-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2102-00586.pdf
Size:
377.26 KB
Format:
Adobe Portable Document Format