A convex-nonconvex strategy for grouped variable selection

dc.citation.firstpage2912en_US
dc.citation.issueNumber2en_US
dc.citation.journalTitleElectronic Journal of Statisticsen_US
dc.citation.lastpage2961en_US
dc.citation.volumeNumber17en_US
dc.contributor.authorLiu, Xiaoqianen_US
dc.contributor.authorMolstad, Aaron J.en_US
dc.contributor.authorChi, Eric C.en_US
dc.date.accessioned2024-05-08T18:56:10Zen_US
dc.date.available2024-05-08T18:56:10Zen_US
dc.date.issued2023en_US
dc.description.abstractThis paper deals with the grouped variable selection problem. A widely used strategy is to augment the negative log-likelihood function with a sparsity-promoting penalty. Existing methods include the group Lasso, group SCAD, and group MCP. The group Lasso solves a convex optimization problem but suffers from underestimation bias. The group SCAD and group MCP avoid this estimation bias but require solving a nonconvex optimization problem that may be plagued by suboptimal local optima. In this work, we propose an alternative method based on the generalized minimax concave (GMC) penalty, which is a folded concave penalty that maintains the convexity of the objective function. We develop a new method for grouped variable selection in linear regression, the group GMC, that generalizes the strategy of the original GMC estimator. We present a primal-dual algorithm for computing the group GMC estimator and also prove properties of the solution path to guide its numerical computation and tuning parameter selection in practice. We establish error bounds for both the group GMC and original GMC estimators. A rich set of simulation studies and a real data application indicate that the proposed group GMC approach outperforms existing methods in several different aspects under a wide array of scenarios.en_US
dc.identifier.citationLiu, X., Molstad, A. J., & Chi, E. C. (2023). A convex-nonconvex strategy for grouped variable selection. Electronic Journal of Statistics, 17(2), 2912–2961. https://doi.org/10.1214/23-EJS2167en_US
dc.identifier.digital23-EJS2167en_US
dc.identifier.doihttps://doi.org/10.1214/23-EJS2167en_US
dc.identifier.urihttps://hdl.handle.net/1911/115666en_US
dc.language.isoengen_US
dc.publisherProject Eucliden_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleA convex-nonconvex strategy for grouped variable selectionen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
23-EJS2167.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format