Domain Decomposition Methods for Nonconforming Finite Element Spaces of Lagrange-Type

dc.contributor.authorCowsar, Lawrence C.en_US
dc.date.accessioned2018-06-18T17:41:09Zen_US
dc.date.available2018-06-18T17:41:09Zen_US
dc.date.issued1993-03en_US
dc.date.noteMarch 1993en_US
dc.description.abstractIn this article, we consider the application of three popular domain decomposition methods to Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of Smith, and the balancing method of Mandel applied to nonconforming elements are shown to converge at the same rate as their applications to the standard conforming piecewise linear Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the existing theory for the conforming elements with only modest modification by constructing an isomorphism between the nonconforming finite element space and a space of continuous piecewise linear functions.en_US
dc.format.extent18 ppen_US
dc.identifier.citationCowsar, Lawrence C.. "Domain Decomposition Methods for Nonconforming Finite Element Spaces of Lagrange-Type." (1993) <a href="https://hdl.handle.net/1911/101791">https://hdl.handle.net/1911/101791</a>.en_US
dc.identifier.digitalTR93-11en_US
dc.identifier.urihttps://hdl.handle.net/1911/101791en_US
dc.language.isoengen_US
dc.titleDomain Decomposition Methods for Nonconforming Finite Element Spaces of Lagrange-Typeen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR93-11.pdf
Size:
396.75 KB
Format:
Adobe Portable Document Format