Domain Decomposition Methods for Nonconforming Finite Element Spaces of Lagrange-Type

Date
1993-03
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

In this article, we consider the application of three popular domain decomposition methods to Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of Smith, and the balancing method of Mandel applied to nonconforming elements are shown to converge at the same rate as their applications to the standard conforming piecewise linear Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the existing theory for the conforming elements with only modest modification by constructing an isomorphism between the nonconforming finite element space and a space of continuous piecewise linear functions.

Description
Advisor
Degree
Type
Technical report
Keywords
Citation

Cowsar, Lawrence C.. "Domain Decomposition Methods for Nonconforming Finite Element Spaces of Lagrange-Type." (1993) https://hdl.handle.net/1911/101791.

Has part(s)
Forms part of
Published Version
Rights
Link to license
Citable link to this page