Identification of Novel Short BaTiO3-Binding/Nucleating Peptides for Phage-Templated in Situ Synthesis of BaTiO3 Polycrystalline Nanowires at Room Temperature
dc.citation.firstpage | 30714 | en_US |
dc.citation.issueNumber | 45 | en_US |
dc.citation.journalTitle | Applied Materials & Interfaces | en_US |
dc.citation.lastpage | 30721 | en_US |
dc.citation.volumeNumber | 8 | en_US |
dc.contributor.author | Li, Yan | en_US |
dc.contributor.author | Cao, Binrui | en_US |
dc.contributor.author | Yang, Mingying | en_US |
dc.contributor.author | Zhu, Ye | en_US |
dc.contributor.author | Suh, Junghae | en_US |
dc.contributor.author | Mao, Chuanbin | en_US |
dc.date.accessioned | 2017-01-27T22:23:42Z | en_US |
dc.date.available | 2017-01-27T22:23:42Z | en_US |
dc.date.issued | 2016 | en_US |
dc.description.abstract | Ferroelectric materials, such as tetragonal barium titanate (BaTiO3), have been widely used in a variety of areas including bioimaging, biosensing, and high power switching devices. However, conventional methods for the synthesis of tetragonal phase BaTiO3 usually require toxic organic reagents and high temperature treatments, and are thus not environment-friendly and energy-efficient. Here, we took advantage of the phage display technique to develop a novel strategy for the synthesis of BaTiO3 nanowires. We identified a short BaTiO3-binding/nucleating peptide, CRGATPMSC (named RS), from a phage-displayed random peptide library by biopanning technique and then genetically fused the peptide to the major coat protein (pVIII) of filamentous M13 phages to form the pVIII-RS phages. We found that the resultant phages could not only bind with the presynthesized BaTiO3 crystals but also induce the nucleation of uniform tetragonal BaTiO3 nanocrystals at room temperature and without the use of toxic reagents to form one-dimensional polycrystalline BaTiO3 nanowires. This approach enables the green synthesis of BaTiO3 polycrystalline nanowires with potential applications in bioimaging and biosensing fields. | en_US |
dc.identifier.citation | Li, Yan, Cao, Binrui, Yang, Mingying, et al.. "Identification of Novel Short BaTiO3-Binding/Nucleating Peptides for Phage-Templated in Situ Synthesis of BaTiO3 Polycrystalline Nanowires at Room Temperature." <i>Applied Materials & Interfaces,</i> 8, no. 45 (2016) American Chemical Society: 30714-30721. http://dx.doi.org/10.1021/acsami.6b09708. | en_US |
dc.identifier.doi | http://dx.doi.org/10.1021/acsami.6b09708 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/93795 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | American Chemical Society | en_US |
dc.rights | This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by the American Chemical Society. | en_US |
dc.subject.keyword | barium titanate | en_US |
dc.subject.keyword | bioassembly | en_US |
dc.subject.keyword | phage | en_US |
dc.subject.keyword | polycrystalline nanowires | en_US |
dc.subject.keyword | tetragonal structure | en_US |
dc.title | Identification of Novel Short BaTiO3-Binding/Nucleating Peptides for Phage-Templated in Situ Synthesis of BaTiO3 Polycrystalline Nanowires at Room Temperature | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | post-print | en_US |
Files
Original bundle
1 - 1 of 1