Compact engineered human mechanosensitive transactivation modules enable potent and versatile synthetic transcriptional control

dc.citation.firstpage1716en_US
dc.citation.issueNumber11en_US
dc.citation.journalTitleNature Methodsen_US
dc.citation.lastpage1728en_US
dc.citation.volumeNumber20en_US
dc.contributor.authorMahata, Barunen_US
dc.contributor.authorCabrera, Alanen_US
dc.contributor.authorBrenner, Daniel A.en_US
dc.contributor.authorGuerra-Resendez, Rosa Seleniaen_US
dc.contributor.authorLi, Jingen_US
dc.contributor.authorGoell, Jacoben_US
dc.contributor.authorWang, Kaiyuanen_US
dc.contributor.authorGuo, Yannieen_US
dc.contributor.authorEscobar, Marioen_US
dc.contributor.authorParthasarathy, Abinand Krishnaen_US
dc.contributor.authorSzadowski, Haileyen_US
dc.contributor.authorBedford, Guyen_US
dc.contributor.authorReed, Daniel R.en_US
dc.contributor.authorKim, Sunghwanen_US
dc.contributor.authorHilton, Isaac B.en_US
dc.date.accessioned2024-05-03T15:51:20Zen_US
dc.date.available2024-05-03T15:51:20Zen_US
dc.date.issued2023en_US
dc.description.abstractEngineered transactivation domains (TADs) combined with programmable DNA binding platforms have revolutionized synthetic transcriptional control. Despite recent progress in programmable CRISPR–Cas-based transactivation (CRISPRa) technologies, the TADs used in these systems often contain poorly tolerated elements and/or are prohibitively large for many applications. Here, we defined and optimized minimal TADs built from human mechanosensitive transcription factors. We used these components to construct potent and compact multipartite transactivation modules (MSN, NMS and eN3x9) and to build the CRISPR–dCas9 recruited enhanced activation module (CRISPR-DREAM) platform. We found that CRISPR-DREAM was specific and robust across mammalian cell types, and efficiently stimulated transcription from diverse regulatory loci. We also showed that MSN and NMS were portable across Type I, II and V CRISPR systems, transcription activator-like effectors and zinc finger proteins. Further, as proofs of concept, we used dCas9-NMS to efficiently reprogram human fibroblasts into induced pluripotent stem cells and demonstrated that mechanosensitive transcription factor TADs are efficacious and well tolerated in therapeutically important primary human cell types. Finally, we leveraged the compact and potent features of these engineered TADs to build dual and all-in-one CRISPRa AAV systems. Altogether, these compact human TADs, fusion modules and delivery architectures should be valuable for synthetic transcriptional control in biomedical applications.en_US
dc.identifier.citationMahata, B., Cabrera, A., Brenner, D. A., Guerra-Resendez, R. S., Li, J., Goell, J., Wang, K., Guo, Y., Escobar, M., Parthasarathy, A. K., Szadowski, H., Bedford, G., Reed, D. R., Kim, S., & Hilton, I. B. (2023). Compact engineered human mechanosensitive transactivation modules enable potent and versatile synthetic transcriptional control. Nature Methods, 20(11), 1716–1728. https://doi.org/10.1038/s41592-023-02036-1en_US
dc.identifier.digitals41592-023-02036-1en_US
dc.identifier.doihttps://doi.org/10.1038/s41592-023-02036-1en_US
dc.identifier.urihttps://hdl.handle.net/1911/115622en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleCompact engineered human mechanosensitive transactivation modules enable potent and versatile synthetic transcriptional controlen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41592-023-02036-1.pdf
Size:
5.65 MB
Format:
Adobe Portable Document Format