In Vivo Ryr2 Editing Corrects Catecholaminergic Polymorphic Ventricular Tachycardia

dc.citation.firstpage953en_US
dc.citation.issueNumber8en_US
dc.citation.journalTitleCirculation Researchen_US
dc.citation.lastpage963en_US
dc.citation.volumeNumber123en_US
dc.contributor.authorPan, Xiaoluen_US
dc.contributor.authorPhilippen, Leonneen_US
dc.contributor.authorLahiri, Satadru K.en_US
dc.contributor.authorLee, Ciaranen_US
dc.contributor.authorPark, So Hyunen_US
dc.contributor.authorWord, Tarah A.en_US
dc.contributor.authorLi, Naen_US
dc.contributor.authorJarrett, Kelsey E.en_US
dc.contributor.authorGupta, Rajaten_US
dc.contributor.authorReynolds, Julia O.en_US
dc.contributor.authorLin, Jeanen_US
dc.contributor.authorBao, Gangen_US
dc.contributor.authorLagor, William R.en_US
dc.contributor.authorWehrens, Xander H.T.en_US
dc.contributor.orgBioengineeringen_US
dc.date.accessioned2019-11-05T17:30:05Zen_US
dc.date.available2019-11-05T17:30:05Zen_US
dc.date.issued2018en_US
dc.description.abstractRationale:Autosomal-dominant mutations in ryanodine receptor type 2 (RYR2) are responsible for ≈60% of all catecholaminergic polymorphic ventricular tachycardia. Dysfunctional RyR2 subunits trigger inappropriate calcium leak from the tetrameric channel resulting in potentially lethal ventricular tachycardia. In vivo CRISPR/Cas9-mediated gene editing is a promising strategy that could be used to eliminate the disease-causing Ryr2 allele and hence rescue catecholaminergic polymorphic ventricular tachycardia.Objective:To determine if somatic in vivo genome editing using the CRISPR/Cas9 system delivered by adeno-associated viral (AAV) vectors could correct catecholaminergic polymorphic ventricular tachycardia arrhythmias in mice heterozygous for RyR2 mutation R176Q (R176Q/+).Methods and Results:Guide RNAs were designed to specifically disrupt the R176Q allele in the R176Q/+ mice using the SaCas9 (Staphylococcus aureus Cas9) genome editing system. AAV serotype 9 was used to deliver Cas9 and guide RNA to neonatal mice by single subcutaneous injection at postnatal day 10. Strikingly, none of the R176Q/+ mice treated with AAV-CRISPR developed arrhythmias, compared with 71% of R176Q/+ mice receiving control AAV serotype 9. Total Ryr2 mRNA and protein levels were significantly reduced in R176Q/+ mice, but not in wild-type littermates. Targeted deep sequencing confirmed successful and highly specific editing of the disease-causing R176Q allele. No detectable off-target mutagenesis was observed in the wild-type Ryr2 allele or the predicted putative off-target site, confirming high specificity for SaCas9 in vivo. In addition, confocal imaging revealed that gene editing normalized the enhanced Ca2+ spark frequency observed in untreated R176Q/+ mice without affecting systolic Ca2+ transients.Conclusions:AAV serotype 9–based delivery of the SaCas9 system can efficiently disrupt a disease-causing allele in cardiomyocytes in vivo. This work highlights the potential of somatic genome editing approaches for the treatment of lethal autosomal-dominant inherited cardiac disorders, such as catecholaminergic polymorphic ventricular tachycardia.en_US
dc.identifier.citationPan, Xiaolu, Philippen, Leonne, Lahiri, Satadru K., et al.. "In Vivo Ryr2 Editing Corrects Catecholaminergic Polymorphic Ventricular Tachycardia." <i>Circulation Research,</i> 123, no. 8 (2018) American Heart Association: 953-963. https://doi.org/10.1161/CIRCRESAHA.118.313369.en_US
dc.identifier.digitalnihms-1503253en_US
dc.identifier.doihttps://doi.org/10.1161/CIRCRESAHA.118.313369en_US
dc.identifier.urihttps://hdl.handle.net/1911/107600en_US
dc.language.isoengen_US
dc.publisherAmerican Heart Associationen_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by the American Heart Associationen_US
dc.titleIn Vivo Ryr2 Editing Corrects Catecholaminergic Polymorphic Ventricular Tachycardiaen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1503253.pdf
Size:
2.28 MB
Format:
Adobe Portable Document Format