The Early-Acting Peroxin PEX19 Is Redundantly Encoded, Farnesylated, and Essential for Viability inᅠ Arabidopsis thaliana

dc.citation.firstpagee0148335en_US
dc.citation.issueNumber1en_US
dc.citation.journalTitlePLoS ONEen_US
dc.citation.volumeNumber11en_US
dc.contributor.authorMcDonnell, Margaret M.en_US
dc.contributor.authorBurkhart, Sarah E.en_US
dc.contributor.authorStoddard, Jerrad M.en_US
dc.contributor.authorWright, Zachary J.en_US
dc.contributor.authorStrader, Lucia C.en_US
dc.contributor.authorBartel, Bonnieen_US
dc.date.accessioned2016-04-04T18:26:23Zen_US
dc.date.available2016-04-04T18:26:23Zen_US
dc.date.issued2016en_US
dc.description.abstractPeroxisomes are single-membrane bound organelles that are essential for normal development in plants and animals. In mammals and yeast, the peroxin (PEX) proteins PEX3 and PEX19 facilitate the early steps of peroxisome membrane protein (PMP) insertion and pre-peroxisome budding from the endoplasmic reticulum. The PEX3 membrane protein acts as a docking site for PEX19, a cytosolic chaperone for PMPs that delivers PMPs to the endoplasmic reticulum or peroxisomal membrane. PEX19 is farnesylated in yeast and mammals, and we used immunoblotting with prenylation mutants to show that PEX19 also is fully farnesylated in wild-type Arabidopsis thaliana plants. We examined insertional alleles disrupting either of the twoArabidopsis PEX19 isoforms, PEX19A or PEX19B, and detected similar levels of PEX19 protein in the pex19a-1 mutant and wild type; however, PEX19 protein was nearly undetectable in the pex19b-1 mutant. Despite the reduction in PEX19 levels in pex19b-1, both pex19a-1 andpex19b-1 single mutants lacked notable peroxisomal β-oxidation defects and displayed normal levels and localization of peroxisomal matrix and membrane proteins. The pex19a-1 pex19b-1double mutant was embryo lethal, indicating a redundantly encoded critical role for PEX19 during embryogenesis. Expressing YFP-tagged versions of either PEX19 isoform rescued this lethality, confirming that PEX19A and PEX19B act redundantly in Arabidopsis. We observed that pex19b-1 enhanced peroxisome-related defects of a subset of peroxin-defective mutants, supporting a role for PEX19 in peroxisome function. Together, our data indicate thatArabidopsis PEX19 promotes peroxisome function and is essential for viability.en_US
dc.identifier.citationMcDonnell, Margaret M., Burkhart, Sarah E., Stoddard, Jerrad M., et al.. "The Early-Acting Peroxin PEX19 Is Redundantly Encoded, Farnesylated, and Essential for Viability inᅠ Arabidopsis thaliana." <i>PLoS ONE,</i> 11, no. 1 (2016) Public Library of Science: e0148335. http://dx.doi.org/10.1371/journal.pone.0148335.en_US
dc.identifier.doihttp://dx.doi.org/10.1371/journal.pone.0148335en_US
dc.identifier.urihttps://hdl.handle.net/1911/88835en_US
dc.language.isoengen_US
dc.publisherPublic Library of Scienceen_US
dc.rightsThis is an open access article distributed under the terms of theᅠCreative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.titleThe Early-Acting Peroxin PEX19 Is Redundantly Encoded, Farnesylated, and Essential for Viability inᅠ Arabidopsis thalianaen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
journal.pone.0148335.pdf
Size:
6.06 MB
Format:
Adobe Portable Document Format
Description: