A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data

dc.citation.firstpage638en_US
dc.citation.issueNumber2en_US
dc.citation.journalTitleThe Annals of Applied Statisticsen_US
dc.citation.lastpage666en_US
dc.citation.volumeNumber10en_US
dc.contributor.authorZhang, Linlinen_US
dc.contributor.authorGuindani, Micheleen_US
dc.contributor.authorVersace, Francescoen_US
dc.contributor.authorEngelmann, Jeffrey M.en_US
dc.contributor.authorVannucci, Marinaen_US
dc.date.accessioned2017-05-09T20:16:07Zen_US
dc.date.available2017-05-09T20:16:07Zen_US
dc.date.issued2016en_US
dc.description.abstractIn this paper we propose a unified, probabilistically coherent framework for the analysis of task-related brain activity in multi-subject fMRI experiments. This is distinct from two-stage “group analysis” approaches traditionally considered in the fMRI literature, which separate the inference on the individual fMRI time courses from the inference at the population level. In our modeling approach we consider a spatiotemporal linear regression model and specifically account for the between-subjects heterogeneity in neuronal activity via a spatially informed multi-subject nonparametric variable selection prior. For posterior inference, in addition to Markov chain Monte Carlo sampling algorithms, we develop suitable variational Bayes algorithms. We show on simulated data that variational Bayes inference achieves satisfactory results at more reduced computational costs than using MCMC, allowing scalability of our methods. In an application to data collected to assess brain responses to emotional stimuli our method correctly detects activation in visual areas when visual stimuli are presented.en_US
dc.identifier.citationZhang, Linlin, Guindani, Michele, Versace, Francesco, et al.. "A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data." <i>The Annals of Applied Statistics,</i> 10, no. 2 (2016) Project Euclid: 638-666. https://doi.org/10.1214/16-AOAS926.en_US
dc.identifier.doihttps://doi.org/10.1214/16-AOAS926en_US
dc.identifier.urihttps://hdl.handle.net/1911/94216en_US
dc.language.isoengen_US
dc.publisherProject Eucliden_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.subject.keywordmulti-subject fMRIen_US
dc.subject.keywordspatiotemporal linear regressionen_US
dc.subject.keywordvariable selection priorsen_US
dc.subject.keywordvariational Bayesen_US
dc.titleA spatiotemporal nonparametric Bayesian model of multi-subject fMRI dataen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BAYESIAN-MODEL.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format