Measurement-Based Analysis, Modeling, and Synthesis of the Internet Delay Space for Large Scale Simulation

Abstract

The characteristics of packet delays among edge networks in the Internet can have a significant impact on the performance and scalability of global-scale distributed systems. Designers rely on simulation to study design alternatives for such systems at scale, which requires an appropriate model of the Internet delay space. The model must preserve the geometry and density distribution of the delay space, which are known, for instance, to influence the effectiveness of selforganization algorithms used in overlay networks. In this paper, we characterize measured delays between Internet edge networks with respect to a set of relevant metrics. We show that existing Internet models differ dramatically from measured delays relative to these metrics. Then, based on measured data, we derive a model of the Internet delay space. The model preserves the relevant metrics, allows for a compact representation, and can be used to synthesize delay data for large-scale simulations. Moreover, specific metrics of the delay space can be adjusted in a principled manner, thus allowing systems designers to study the robustness of their designs to such variations.

Description
Advisor
Degree
Type
Technical report
Keywords
Citation

Zhang, Bo, Ng, T. S. Eugene, Nandi, Animesh, et al.. "Measurement-Based Analysis, Modeling, and Synthesis of the Internet Delay Space for Large Scale Simulation." (2006) https://hdl.handle.net/1911/96347.

Has part(s)
Forms part of
Published Version
Rights
You are granted permission for the noncommercial reproduction, distribution, display, and performance of this technical report in any format, but this permission is only for a period of forty-five (45) days from the most recent time that you verified that this technical report is still available from the Computer Science Department of Rice University under terms that include this permission. All other rights are reserved by the author(s).
Link to license
Citable link to this page