
Measurement-Based Analysis, Modeling, and Synthesis of
the Internet Delay Space for Large-Scale Simulation

Bo Zhang, T. S. Eugene Ng, Animesh Nandi, Rudolf Riedi, Peter Druschel*, Guohui Wang
Rice University and Max Plank Institue*

ABSTRACT
The characteristics of packet delays among edge networks in
the Internet can have a significant impact on the performance
and scalability of global-scale distributed systems. Design-
ers rely on simulation to study design alternatives for such
systems at scale, which requires an appropriate model of the
Internet delay space. The model must preserve the geom-
etry and density distribution of the delay space, which are
known, for instance, to influence the effectiveness of self-
organization algorithms used in overlay networks.

In this paper, we characterize measured delays between In-
ternet edge networks with respect to a set of relevant metrics.
We show that existing Internet models differ dramatically
from measured delays relative to these metrics. Then, based
on measured data, we derive a model of the Internet delay
space. The model preserves the relevant metrics, allows fora
compact representation, and can be used to synthesize delay
data for large-scale simulations. Moreover, specific metrics
of the delay space can be adjusted in a principled manner,
thus allowing systems designers to study the robustness of
their designs to such variations.

1. INTRODUCTION
Designers of large-scale distributed systems rely on simula-
tion and network emulation to study design alternatives and
evaluate prototype systems at scale and prior to deployment.
To obtain accurate results, such simulations or emulations
must include a model of the Internet delay space that accu-
rately reflects those characteristics of real Internet delay that
influence system performance. For example, having realistic
clustering properties is important because they can influence
the load balance of delay-optimized overlay systems, and
the effectiveness of server placement policies and caching
strategies. Having realistic growth characteristics in the de-
lay space is another key, because the effectiveness of many
self-organization algorithms depends on growth characteris-
tics. Many distributed systems are also sensitive to the ineffi-
ciency of IP routing with respect to delay. Such inefficiency
must be realistically reflected in the delay space as well.

Currently, two approaches are used to obtain a delay model.
The first approach, adopted for instance by the P2PSim sim-

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Delay(ms)

P
ro

ba
bi

lit
y

INET
GT−ITM
Real Data 1
Real Data 2

Figure 1: Delay distribution comparison for different
data sets.

ulator [18], is to collect actual delay measurements using a
tool such as King [10]. This approach yields a realistic de-
lay space. However, due to limitation of the measurement
methodology and theO(N2) space requirement of a delay
matrix, the scope of measured delay data is limited. For ex-
ample, P2PSim currently comes with a 1740×1740 delay
space matrix. Moreover, raw measured data often contains
errors and missing values.

The second approach is to start with an artificial network
topology model (e.g. [36, 38, 8, 9, 13]) and assign artifi-
cial link delays. The delay space is then computed using a
shortest-path routing algorithm over the topology. Such arti-
ficially generated delay models differ dramatically from ac-
tual Internet delay spaces. Figure 1 compares the delay dis-
tributions of artificial delay spaces based on the GT-ITM [38]
and the Inet [37] topology models against two measured In-
ternet delay spaces. The artificial delay distribution doesnot
even remotely resemble that of the measured data. Clearly,
there are rich features in Internet delay spaces that are not
captured in the artificial delay models.

This study addresses the short-comings of existing approaches
for obtaining a delay model. First, we quantitatively ana-
lyze measured Internet delay spaces, specifically, the static
round-trip propagation delays among edge networks in the
Internet. Then, we identify a set of metrics that are relevant

1

to distributed systems design, and characterize the measured
Internet delay space with respect to these metrics. Based
on these analytical insights, we develop a method to model
measured Internet delay spaces. The resulting model has
a highly compactO(N) representation (as opposed to the
O(N2) matrix representation) that accurately preserves all
the relevant delay space characteristics, and can interpolate
missing measurements.

Finally, we develop a method to synthesize an artificial delay
space based on the properties of a measured delay space.
The method exploits the scaling characteristics found in the
measurements and makes it possible to synthesize a realistic
delay space larger than the measured delay space. Moreover,
specific characteristics in the synthesized delay space canbe
adjusted in a principled manner, allowing systems designers
to study the robustness of their designs to such variations.

We make two primary contributions in this work:

• We systematically quantify the properties of the In-
ternet delay space with respect to a set of statistical,
structural, and routing metrics relevant to distributed
systems design. This leads to new fundamental un-
derstandings of the Internet delay space characteristics
that may inform future work.

• We develop a set of building block techniques to model
and synthesize the Internet delay space compactly while
accurately preserving all relevant metrics. The com-
pact representation enables accurate and memory effi-
cient network simulations and emulations at large scale.

The rest of the paper is organized as follows. First, we
describe our methodology for collecting the Internet delay
space data in Section 2. We motivate the relevant analytical
metrics and present our analytical findings in Section 3. In
Section 4, we exploit our quantitative understanding of the
Internet delay space to develop a compact model and eval-
uate its effectiveness. We extend the delay space model to
incorporate techniques to synthesize an artificial delay space
and evaluate the accuracy of the synthesized delay space in
Section 5. We summarize the related work in Section 6 and
make several concluding remarks in Section 7.

2. DATA COLLECTION METHODOLOGY
Our measured Internet delay space data sets were collected
between October 2005 to November 2005 using a slightly
modified version of the King [10] tool. King measures the
RTT between DNS servers. We select random DNS servers
from the entire Internet. Only one DNS server is used per or-
ganization (as inferred from the domain names). This way,
each DNS server in the data set approximates the location
of one edge network. By measuring RTT among these DNS

servers, we get a delay space for the corresponding edge net-
works. Over this time period, we collected two delay space
matrices: the Real Data 1 set has 3997 rows and columns
with a missing data rate of 13 percent, the Real Data 2 set
has 3994 rows and columns with a missing data rate of 10
percent.

Next, we describe the measurement process in more detail.
We start from a list of random IP addresses drawn from
the prefixes announced in BGP. This data is published by
the Route Views project [24]. For each IP prefix, we per-
form a reverse DNS lookup to determine the associated DNS
servers. Each reverse lookup returns a set of DNS servers
DIPi

. We keep only the DNS server sets in which at least
one server supports recursive queries, since King requiresit.
If two DNS server setsDIPi

andDIPj
overlap, then only

one of the two sets is kept. If there are more than one server
in a set, then all the servers in the set must be physically
close. We check this by pinging all the servers in the set to
ensure that they have identical RTT from our perspective.

Finally, among the remaining DNS server sets, we choose
one server that supports recursive queries per set to conduct
our measurements. The RTT between each pair of DNS
servers is measured at least 20 times and no more than 50
times in each direction. If fewer than 20 valid measurements
are obtained in each direction, the measurement is discarded.
The minimum RTT for each direction is recorded. If the
RTT from the two directions disagree by more than 10%,
the measurement is discarded. Then we eliminate all values
that are smaller than 100 microseconds and greater than 2
seconds since such values are considered too extreme to be
reasonable and are most likely measurement errors. Finally,
we conduct a shortest path analysis over the matrix to elim-
inate edges that are involved in more than 10000 shortest
paths, which indicates a measurement error. Obviously, due
to measurement errors, many DNS servers must be discarded
in the end. In our data sets, we start with a list of 5000 DNS
servers and in the end obtain roughly a 4000x4000 matrix
with an acceptable amount of missing data. To understand
the properties in the data sets under scaling, we consider 4
different random sub-sample sizes: 800, 1600, 2400, and
3200. To reduce the sensitivity to a particular random sam-
ple, for each sub-sample size, we consider 5 random sets.
Results presented in this paper are averaged over these 5 ran-
dom sets.

In addition to the measured data sets, we also use artificial
delays generated by connectivity models for comparisons.
The two generators we use are Inet [37] and GT-ITM [38].
The Inet generator creates a topology that has power-law
node degree distribution properties. The GT-ITM genera-
tor is used to generate a topology based on the Transit-Stub
model. Although GT-ITM provides an option to generate tri-
angle inequality violations, we did not use this option. For
Inet, to generate the delays, we use the standard method of

2

placing nodes randomly on a 2D plane and then use the 2D
Euclidean distance between a pair of connected nodes as the
link latency. For GT-ITM, we assign transit and stub link de-
lays accordingly. In both cases, all pair shortest path routing
is used to generate the resulting artificial delay space ma-
trices. We scale the delays such that the maximum delay
is 1600ms. This constant scaling factor does not affect the
structure of the generated delay spaces, we do this only to
simplify the presentation of results.

3. ANALYSIS OF INTERNET DELAY SPACE
A fundamental problem faced by all data analysis studies is
how to select a sensible set of metrics to characterize the
data. After all, there is virtually an unlimited number of
statistics that one can compute. Keeping in mind that our
objective is to understand the Internet delay space with re-
spect to distributed systems design, we first identify a set of
metrics that are known to significantly influence the perfor-
mance of distributed systems. Then, we analyze measured
Internet delay data with respect to these and other statisti-
cal and structural properties. The results give new insight
into the characteristics of the Internet delay space, and they
inform the design of an appropriate model.

3.1 Systems-motivated Metrics
We begin by identifying a set of properties of the delay space
that are known to strongly influence distributed system de-
sign and performance. While there may exist other relevant
metrics, we believe the chosen set does capture a wide range
of important issues in distributed systems design and evalu-
ation.

Global clustering - This metric characterizes clustering in
the delay space at a macroscopic level. For instance, the
continents with the largest concentration of IP subnetworks
(North America, Europe and Asia) form recognizable clus-
ters in the delay space. This global clustering structure is,
for instance, relevant to the placement of large data centers
and web request redirection algorithms (e.g. [21]).

Our algorithm to determine the global clustering works as
follows. Given N nodes in the measured input data, it first
treats each node as a singleton cluster. The algorithm then
iteratively finds two closest clusters to merge. The distance
between two clusters is defined as the average distance be-
tween the nodes in the two clusters. A cutoff delay value
determines when to stop the merging process. If the dis-
tance between the two closest clusters is larger than the cut-
off, the merging process stops. By varying the cutoff value
and monitoring the resulting cluster sizes, the global cluster-
ing properties can be determined.

Local clustering - This metric characterizes clustering in the
delay space at a microscopic level. It is based on a directed
graph formed by having each node point to its nearest neigh-
bor in the delay space. This metric is relevant, for instance,

1

2

Nearest neighbor edge

Node in delay space

1st cluster head

2nd cluster head

Not drawn to exact scale

1

2

3

3rd cluster head3

4

Not a cluster head; extracted

by cluster 1

4

Figure 2: Nearest neighbor directed graph analysis tech-
nique.

to the in-degree and thus the load balance among nodes in
delay-optimized overlay networks (e.g. [5]). For example,
dense local clustering can lead to an overlay node having
an unexpectedly high number of overlay neighbors and can
potentially create a load imbalance in the overlay.

Based on the measured delay data, for each node in the de-
lay space, we create a directed edge to the node with the
smallest delay. The resulting graph is the nearest neighbor
directed graph. Then, we can analyze the in-degree of nodes
in the graph. Moreover, we can use the graph to identify a set
of local cluster heads (or centers). We select the node with
the highest in-degree as a local cluster head and remove it
and its immediate children from the graph. This step is ap-
plied repeatedly to identify the next local cluster head until
no more nodes remain. Since a local cluster resembles a star
network, we sometimes simply call it a star. The process is
illustrated in Figure 2. The importance of the local cluster
heads will become clear in subsequent sections.

Growth metrics - Distributed nearest neighbor selection is a
hard problem, but efficient algorithms have been identified to
solve the problem for growth-restricted metric spaces [12].
These algorithms are used, for instance, in Tapestry [39]
and Chord [32] to select overlay neighbors. In a growth-
restricted metric space, if the number of nodes with a de-
lay of at mostr from some nodei is Bi(r), thenBi(2r) ≤
c · Bi(r), wherec is a constant. We characterize the growth
properties of the Internet delay space by evaluatingB(2r)/B(r).

Another metric based on nearest neighbors is theD(k) met-
ric. Let d(i, k) be the average delay from a nodei to its k
closest nodes in the delay space andN be the set of nodes,
then D(k) = 1

|N |

∑
i∈N d(i, k). Structured overlay net-

works like Chord, Tapestry and Pastry employ proximity
neighbor selection (PNS) to reduce the expected delay stretch
S, i.e., the ratio of the delay of an overlay route over the di-
rect routing delay averaged over all pairs of nodes [11, 4, 22,

3

Robust

dimensionality

reduction

x y

8x8 delay space matrix

(8 dimensional data,

may have missing data)

Low dimensional

Euclidean map

(2D in this example)

8 2

Euclidean distances

approximate 8x8

delay space matrix

x

y

Figure 3: Robust dimensionality reduction.

5]. We choose to include theD(k) metric because analysis
have shown that in Tapestry and Pastry, the expected delay
stretchS in the overlay can be predicted based on the func-
tion D(k) [5].

Triangle inequality violations - The triangle inequality states
that given pointsx, y andz in a Euclidean space, the dis-
tancesdij between pointsi andj satisfydxz ≤ dxy + dyz.
The Internet delay space, however, does not obey the tri-
angle inequality, since Internet routing may not be optimal
with respect to delay. Unfortunately, many distributed near-
est neighbor selection algorithms rely on the assumption that
the triangle inequality holds [25, 12, 35]. Thus, it is impor-
tant to characterize the frequency and severity of the viola-
tions in the Internet delay space.

Routing inefficiency - This metric is closely related to tri-
angle inequality violation. In particular, routing inefficiency
is the ratio of the delay between two nodes over the delay of
the best possible overlay path in the delay space. Some sys-
tems [3] exploit overlay routing for performance gain. The
routing inefficiency metric quantifies the maximum possible
delay reduction achievable by such systems.

3.2 Structural Properties
In Figure 1, we can observe that the delay distributions of the
measured data sets have certain characteristic peaks. This
suggests that nodes form clusters in the data. In contrast,
the delay distributions for the topology models do not indi-
cate such behavior. Analysis of random data sub-samples
indicates that the delay distribution is also independent of
sample size. To visualize the locations of nodes, we embed
the data sets into a 2D Euclidean space using a robust dimen-
sionality reduction procedure. The high level idea of dimen-
sionality reduction is illustrated in Figure 3. Several tech-
niques exist to compute such an embedding robustly even
when some missing measurements are present [17, 7, 27,
6, 14, 34]. In this paper, we adopt a slightly modified ver-
sion of the GNP [17] method to compute the embedding.
This modified version simply ignores the missing measure-
ments in the delay space matrix when computing node co-
ordinates. GNP uses Landmarks as global reference points
to compute coordinates. We observe that as long as enough
random landmarks are chosen, the accuracy of the embed-
ding is not affected by the missing measurements.

−400 −200 0 200 400
−600

−400

−200

0

200

400

600

X Coordinate

Y
 C

oo
rd

in
at

e

2D mapping scatter plots for INET

−400 −200 0 200 400
−600

−400

−200

0

200

400

600

X Coordinate

Y
 C

oo
rd

in
at

e

2D mapping scatter plots for GT−ITM

−400 −200 0 200 400
−600

−400

−200

0

200

400

600

X Coordinate

Y
 C

oo
rd

in
at

e

2D mapping scatter plots for Real Data 1

−400 −200 0 200 400
−600

−400

−200

0

200

400

600

X Coordinate

Y
 C

oo
rd

in
at

e

2D mapping scatter plots for Real Data 2

Figure 4: 2D coordinates scatter plot comparison.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Cutoff(ms)

La
rg

es
t C

lu
st

er
 P

er
ce

nt
ag

e
%

SampleSize=800

SampleSize=1600

SampleSize=2400

SampleSize=3200

Figure 5: Clustering results for different sample sizes.

Figure 4 displays the scatter plots of the 2D Euclidean coor-
dinates generated for different data sets. The visual differ-
ences between the measured data and the topology models
are striking. It is easy to see that there are three dominant
clusters in the measured data. Using the NetGeo tool [16],
we learn that the clusters approximately correspond to three
continents: North America, Europe, and Asia. In contrast,
the nodes in the topology models tend to cluster around lines
radiating from the center. It is likely that this pattern results
from the tree-like structure of the topology models; however,
a full analysis of this complex patterns is beyond the scope
of this paper.

To quantify the global clustering properties in the measured
data sets, we apply the described global clustering algorithm
and plot the percentage of nodes in the largest cluster against
different clustering cut-off thresholds in Figure 5. Regard-
less of the sample size, the largest cluster’s size increases
sharply at cutoff values 155ms and 250ms. These sharp in-
creases are caused by the merging of two major clusters at
these thresholds. The steps suggest that there are three major

4

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

In−degree

P
ro

ba
bi

lit
y

SampleSize=800
SampleSize=1600
SampleSize=2400
SampleSize=3200

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

In−degree

P
ro

ba
bi

lit
y

INET
GT−ITM

0 500 1000 1500 2000 2500 3000 3500
8

10

12

14

16

18

20

22

24

26

sample size

av
er

ag
e

m
ax

im
um

 s
ta

r
si

ze

average maximum star size

best fit line

(a) (b) (c)

Figure 6: Local cluster analysis. (a) Exponential-like in-degree distribution for measured data (log scale). (b) Power-
law-like in-degree distribution for INET and GT-ITM (log-l og scale). (c) Average maximum star size versus sample size,
with best linear fit line.

Sample size # Cluster heads Percentage
800 185 23.1%
1600 363 22.7%
2400 547 22.8%
3200 712 22.3%
3997 (all data) 884 22.1%

Table 1: Average fraction of nodes classified as cluster
heads in Real Data 1.

clusters. By setting the threshold to 120ms, we are able to
effectively classify nodes into the three major clusters. They
roughly account for 45%, 35%, and 9% of the nodes, re-
spectively. The remaining 11% are nodes that are scattered
outside of the major clusters.

The global clustering analysis reveals the coarse-grainedstruc-
ture of the delay space. To understand the fine-grained struc-
ture, we conduct the nearest neighbor directed graph analysis
on the data sets. Figure 6(a) shows the in-degree distribu-
tions for different sample sizes. Observe that the in-degree
distribution for the measured data is nearly exponential ex-
cept for the extended tail. The maximum in-degree also in-
creases with the sample size. In contrast, as shown in Fig-
ure 6(b), the in-degree distributions for the Inet and GT-ITM
topologies follow closely the power-law distribution. This
implies that while local cluster sizes vary, they vary more
mildly in reality than in the topology models.

We classify the nodes into local cluster heads (or star heads)
and non-heads using the procedure described in 3.1. Table 1
shows that the proportion of nodes in the data that are classi-
fied as local cluster heads is independent of the sample size.
Moreover, as shown in Figure 6(c), the average maximum
local cluster size (or star size) scales linearly with the sam-
ple size. These properties will become useful when we turn
to the synthesis of delay spaces later in the paper.

To conclude our analysis of the structural properties, we turn
to analyzing spatial growth. Figure 7 shows the median

0 100 200 300 400 500 600
10

0

10
1

10
2

r(ms)

M
ed

ia
n

B
(2

r)
/B

(r
)

INET

GT−ITM

Real Data 1

Real Data 2

Real Data Sample 800

Real Data Sample 1600

Real Data Sample 2400

Real Data Sample 3200

Figure 7: B(2r)/B(r) metric comparison for different
data sets (log scale).

B(2r)/B(r) growth of the data sets. We plot the median
because, unlike the mean, it is insensitive to the extreme out-
liers and can better characterize the dominant trends. As can
be seen, the topology models have far higher peak spatial
growth than the measured data (note the log scale). In the
measured data, the initial growth is higher when the ball is
expanding within a major cluster. As soon as the ball radius
covers the nodes in each major cluster, growth slows down
as expected. Further more, this growth trend in the measured
data is invariant across different sample sizes.

In terms of theD(k) metric, we also observe dramatic dif-
ferences between topology models and the measured data.
Figure 8 indicates that in the topology models, from the per-
spective of an observer node, even the nearest nodes have de-
lays comparable to the overall average delay of all the nodes.
Thus, delay is a fairly poor differentiator for sorting nodes
in the topology models. In contrast, in the measured data,
the delays of nodes from an observer node are more evenly
spread throughout the entire range, thus delay can be used
as a effective differentiator. Finally, observe that theD(k)
metric is invariant across different sample sizes.

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k/N

D
(k

)/
D

(N
)

INET

GT−ITM

RealData 1

RealData 2

Real Data Sample 800

Real Data Sample 1600

Real Data Sample 2400

Real Data Sample 3200

Figure 8: D(k)/D(N) metric comparison for different
data sets.

Figure 9: Type 1 triangle inequality violations for Real
Data 1 (white color is most severe).

3.3 Routing Properties
We next analyze the measured data sets with respect to prop-
erties related to routing: triangle inequality violationsand
routing inefficiency. We say that an edgeij in the data
set causes a Type 1 triangle inequality violation if for some
nodek, dik+dkj

dij
< 1, and it causes a Type 2 violation if

|dik−dkj |
dij

> 1. Intuitively, better overlay paths can be found
for edges that cause Type 1 violations, and edges that cause
Type 2 violations can potentially provide short-cut overlay
paths.

For each edgeij, we count the number of Type 1 violations
it causes. To illustrate how the number of triangle inequality
violations are distributed over the major clusters, we present
a matrix in Figure 9 for Real Data 1; the result for Real
Data 2 is similar. To produce this figure, we first reorga-
nize the original data matrix by grouping nodes in the same
clusters together, such that the matrix indices of the nodes
in the largest cluster are the smallest, the indices for nodes

Figure 10: Type 2 triangle inequality violations for Real
Data 1 (white color is most severe).

in the second largest cluster are next, and so on. Nodes that
do not belong to the three largest clusters are assigned the
largest matrix indices. The top left corner has indices (0,0).

Each point(i, j) in the plot represents the number of Type 1
violations that the edgeij is involved in as a shade of gray.
A black point indicates no violation and a white point in-
dicates the maximum number of violations encountered for
any edge in the analysis. Missing values in the matrix are
drawn as white points.

It is immediately apparent that clustering is very useful for
classifying triangle inequality violations. It can be seenthat
edges within the same cluster (i.e. the 3 blocks along the
diagonal) tend to have significantly fewer Type 1 violations
(darker) than edges that cross clusters (lighter). Also, the
number of violations for edges connecting a given pair of
clusters is quite homogeneous. Figure 10 shows the corre-
sponding results for Type 2 violations. Here, the trend is
reversed: The short edges within a given cluster cause the
most violations. The number of violations for edges con-
necting a given pair of clusters is again fairly homogeneous.
These results imply that, if two nodes are within the same
major cluster, then the chance of finding a shorter overlay
path is far lower then when the nodes are in different clus-
ters. Moreover, edges that are used to form better overlay
paths are most likely found inside a cluster.

We show in Figure 11(a) and Figure 11(b) the cumulative
distributions of Type 1 and Type 2 violation ratios for differ-
ent sample sizes. Note that these distributions are indepen-
dent of sample size.

Figure 11(c) shows the cumulative distributions of routing
inefficiency (RI) across different sample sizes. The potential

6

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average type 1 violation ratio %

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

SampleSize=800

SampleSize=1600

SampleSize=2400

SampelSize=3200

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average type 2 violation ratio %

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

SampleSize=800

SampleSize=1600

SampleSize=2400

SampleSize=3200

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RI

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

SampleSize=800

SampleSize=1600

SampleSize=2400

SampleSize=3200

(a) (b) (c)

Figure 11: (a) Type 1 violation ratios distribution for diff erent sample sizes. (b) Type 2 violation ratios distribution for
different sample sizes. (c) Routing inefficiency distribution for different sample sizes.

gain by performing overlay routing is moderate. We observe
that as the sample size increases, the RI increases. This is
due to the fact that as the sample size increases, more short
edges that can form better overlay paths are discovered. The
distributions of the underlying triangle inequality violation
ratios, however, does not change with sample size as shown
in Figure 11(a) and (b). Interestingly, we also observe that
only 42,702 edges among the 6,883,700 possible edges are
used to construct the better overlay paths. This suggests that
there exists some small, low delay ”backbone” networks that
can be exploited by overlay routing.

3.4 Summary
In summary, our empirical analysis of the measured Internet
delay spaces between edge networks provides a number of
new insights:

• The three continents, North America, Asia and Europe
dominate the coarse-grained cluster structure of the In-
ternet delay space.

• The in-degree distribution of the directed nearest neigh-
bor graph resembles an exponential distribution, but
with a long tail; it does not follow a power law. The
maximal in-degree increases with the sample size.

• The relative number of local clusters appears indepen-
dent of the sample size, though the maximal size of the
clusters increases linearly with the sample size.

• The growth metrics clearly reflect the coarse-grained
structure of the delay space. The observed spatial growth
rate is low.

• The potential benefit of overlay routing for a pair of
nodesij and the utility of the pair for overlay routing
can be predicted by the clusters wherei andj belong
to. The distributions of triangle inequality violation
ratios are independent of the sample size.

• Less than one percent of all edges account for the gains
in overlay routing delay.

• None of the above characteristics of the delay space
are accurately reflected in existing Internet topology
models.

4. MODELING THE INTERNET DELAY SPACE
Using measured Internet delay spaces to drive distributed
system simulations allows system designers to evaluate their
solutions under the most realistic delay space characteristics.
However, there are two potential concerns. First of all, mea-
suring Internet delay spaces is a time consuming and difficult
process. Due to network outages and measurement errors,
there are usually a significant number of missing measure-
ments. These missing values make it impossible to simulate
the delay characteristics of the network completely. The sec-
ond potential concern is that theO(N2) storage requirement
of the matrix representation does not scale gracefully.

To address these concerns, we develop techniques to model
a measured Internet delay space. This model can sensibly
interpolate the missing measurements, and its storage over-
head is onlyO(N).

4.1 Building Block Techniques
Technique 1: Low-dimensional Euclidean embedding-
The first technique we use is to model an Internet delay
space using a low-dimensional Euclidean embedding. That
is, we compute Euclidean coordinates for each node and use
Euclidean distances to approximate the delays in the delay
space. Such an Euclidean embedding has a scalableO(N)
representation. Moreover, previous studies have shown that
an Internet delay space can be well approximated by a Eu-
clidean embedding with as little as 5 dimensions, and sev-
eral techniques exist to compute such an embedding robustly
even when some missing measurements are present in the
measured delay space [17, 7, 27, 6, 14, 34, 31, 30]. In this
paper, we adopt a slightly modified version of the GNP [17]
method to compute the embedding. This modified version
simply ignores the missing measurements in the delay space
matrix when computing node coordinates. GNP uses Land-
marks as global reference points to compute coordinates. We

7

Euclidean model

Cluster 1

Cluster 2

Cluster 3

i

j

150ms

Hcluster 1&2,150ms
Type-1

Hcluster 1&2,150ms
Type-2

150ms

150ms

P1 = Pcluster 1&2, 150ms
Type-1

P2 = Pcluster 1&2, 150ms
Type-2

P 1
+P 3

(P 1
/(P

1
+P 2

) -
1)

1-P1-P2+P3
No global distortion, return 150ms

P3 = Pcluster 1&2, 150ms
Type-1&2

P
2 +P

3 (P
2 /(P

1 +P
2) -1)

Figure 12: Global distortion technique.

observe that as long as enough random landmarks are cho-
sen, the accuracy of the embedding is not affected by the
missing measurements.

As we will show in Section 4.3, a 5D Euclidean embedding
of the measured Internet delay space can preserve some of
the key metrics quite well. In the 5D Euclidean map, the
overall delay distribution, the global clustering properties,
and the growth metrics are very well preserved. Moreover,
the accuracy of the 5D Euclidean map is good enough to al-
low a reasonable estimation of missing measurements. For
Real Data 1, the 5D Euclidean map can predict the measured
delays to within 50% error for 93.08% of the data. We expect
this level of accuracy to hold also for the missing data values.
However, a 5D Euclidean map fails to preserve triangle in-
equality violations, routing inefficiency, and local clustering
properties.

Obviously, Euclidean embedding cannot preserve triangle
inequality violations, thus no routing inefficiency. The Eu-
clidean map also fails to preserve nodes with high in-degree
in the nearest neighbor directed graph. This is because a
node cannot have a high number of nearest neighbors in a
low dimensional Euclidean metric space. Specifically, the
maximal in-degree is 26 for the real data and only 9 for the
5D map. Moreover, in the 5D map, there are much fewer
nodes with in-degree 0 than the real data. For comparison,
we generate random points in a 10D space and the maxi-
mal in-degree achieved is only 6. Thus, even in a higher
dimensional space, high in-degree is not something that oc-
curs naturally.

To address these limitations of a basic 5D Euclidean model,
we use two additional techniques in order to reconstruct the
properties lost as a result of the Euclidean embedding.

Technique 2: Global distortion - The basic technique to
create triangle inequality violations in the 5D Euclidean model
is to distort the delays computed in the 5D embedding as part
of a post-processing step. Since the frequency of triangle in-
equality violations in the measured data is relatively small, it

suffices to distort only a small subset of node pairs or edges.
The key questions to decide are (1) how many edges to dis-
tort, (2) what distortion distribution to use, and (3) how to
ensure the distortion to an edge is deterministic and repeat-
able. The last property ensures that the model always pro-
duces the same delay for a given pair of nodes.

The key idea is to identify the edges in the measured data that
cause violations above a certain severity threshold, charac-
terize the distortion distribution for these edges when they
are mapped into the 5D Euclidean model, then use this same
distortion distribution to introduce distortions when delays
are generated from the 5D embedding. The process is made
deterministic by using the node identifier to generate pseudo-
random numbers. By choosing different severity thresholds,
we can vary the number of edges that get distorted in the
model and experimentally determine the threshold that best
matches the empirical data. The technique is illustrated in
Figure 12.

We define a violation severity thresholdR. A violation caused
by an edgeij is severe if for some nodek, dik+dkj

dij
< R

(called Type 1 violation), or if|dik−dkj |
dij

> 1

R
(called Type

2 violation). We then compute the distortion distribution
for these special edges and store it along with the coordi-
nated of the 5D embedding. The distribution is then used
to introduce distortions when generating delays from the 5D
embedding. Since the violation characteristics vary dramat-
ically across different cluster-to-cluster groups (as discussed
in Section 3.3), we compute and store the distortion distri-
bution separately for each cluster-to-cluster group.

For each cluster-to-cluster groupg, all edges with the same
5D Euclidean model delayl (rounded down to the nearest
1ms) form a subgroup. For each subgroup(g, l), we com-
pute the fraction of edges in this subgroup that are involved
in severe Type 1 violations in the real data,PType−1

g,l , and

a histogramHType−1

g,l to characterize the real delay distri-
bution of those severe violation edges. Similarly, for Type
2 violations, we compute the fractionPType−2

g,l and the his-

togramHType−2

g,l . We also compute the fraction of edges
that incur severe Type 1 and Type 2 violations simultane-
ously,PType−1&2

g,l . This extra statistical information incurs
an additional constant storage overhead for the model.

With these statistics, the model delay with global distortion
between nodei and j is then computed as follows. Draw
a pseudo-random numberρ in [0,1] based on the IDs of
i and j. Let the Euclidean distance betweeni and j be
lij and the cluster-cluster group beg. Based onPType−1

g,lij
,

PType−2

g,lij
, PType−1&2

g,lij
, and usingρ as a random variable,

decide whether the edgeij should be treated as a severe
Type 1 violation (with probabilityPType−1

g,lij
+ PType−1&2

g,lij
·

8

ri

ti

Local cluster center i, size = 6

Member of 6-nearest neighbor set, Xi

Delay to node i gets distorted to ti

Figure 13: Local distortion technique.

(
P

Type−1

g,lij

P
T ype−1

g,lij
+P

Type−2

g,lij

− 1)), or a severe Type 2 violation (with

probabilityPType−2

g,lij
+PType−1&2

g,lij
·(

P
T ype−2

g,lij

P
T ype−1

g,lij
+P

T ype−2

g,lij

−1)),

or to return the valuelij without distortion. If the edgeij is
treated as a severe Type 1 violation, then we use the his-
togramHType−1

g,lij
andρ to draw a value from the histogram

and return that value. Similarly, if the edge is treated as a se-
vere Type 2 violation, then we use the histogramHType−2

g,Dij

instead.

By experimenting with different thresholdR, we have de-
termined that a value of 0.7 produces Type 1 and Type 2
violation distributions similar to those observed in the real
data. This is also the threshold we use for the remainder of
this paper.

Technique 3: Local distortion - To preserve the local clus-
tering in the measured data, we introduce additional local
distortion. The principal idea is to pull some nodes within
a radius around a local cluster center closer to create the
needed in-degree, as illustrated in Figure 13. From the near-
est neighbor directed graph analysis on the measured data,
we identify local cluster centers and note their sizes. Sup-
pose a local cluster center nodei has a cluster size ofsi

in the original data. We identify the set of itssi nearest
neighbors,Xi, in the model after global distortion. Then, we
compute a radiusri asmaxj∈Xi

(dij), and a thresholdti as
minj,k∈Xi

(djk)−ǫ. Currently,ǫ is set to0.01·minj,k∈Xi
(djk).

Then we associate the valuesri and ti with nodei in the
model. ri is essentially the radius within which distortion
may be necessary.ti is the delay needed to beat the smallest
delay among the nodes inXi. This additional information
adds a constant storage overhead.

The model delay with local distortion between nodei andj
is then computed as follows. Suppose the delay for the edge
ij after global distortion islij . If neither i nor j is a local
cluster center,lij is returned. Supposei is a local cluster
center andj is not, then iflij ≤ ri, we returnmin(ti, lij);
otherwise, we returnlij . Theti threshold is used to ensure
that the nodes inXi cannot choose one another as their near-
est neighbors. After the distortion, they will choosei as their

nearest neighbor unless there is a closer node outside of the
radiusri. If both i andj are local cluster centers, we pick
the one with the smaller node identifier as the center and
perform the above steps.

4.2 Modeling Framework
Based on the basic techniques described above, the overall
framework for modeling a measured Internet delay space is
as follows:

Step 1. Perform global clustering on the data to assign nodes
to major clusters. Perform nearest neighbor directed graph
analysis to identify local cluster centers and their sizes.

Step 2. Compute a 5D Euclidean embedding of the data us-
ing a robust method. In this paper, we use a slightly modified
version of GNP.

Step 3. For each cluster-cluster groupg and Euclidean model
delay l, compute the global distortion statisticsPType−1

g,l ,

PType−2

g,l , PType−1&2

g,l , HType−1

g,l , HType−2

g,l using a severe
violation thresholdR. For each local cluster centeri, com-
pute the local distortion statisticsri andti.

Step 4. At this point, the original measured data is no longer
needed. To compute the model delay between nodei andj,
first compute the Euclidean model delay, then apply global
distortion if necessary, and finally apply local distortionif
necessary. Return final value.

The total storage overhead of the model isO(N) and calcu-
lating the delay of an edge at run time is simple.

4.3 Evaluating the Model
We evaluate the effectiveness of our modeling framework
by comparing the properties found in Real Data 1 against
properties in the resulting model of Real Data 1. Figure 14
presents our results.

Overall, we can see that all the important trends are pre-
served by the model very well. As expected, there are some
small discrepancies. We believe the primary reason for the
discrepancies is a slight shift in the overall delay distribution
in the 5D Euclidean map. This can be seen in Figure 14(a),
as there are fewer long delays and more short delays in the
model than in the real data. The impact of this shift is ob-
served in the shifted cluster merging points in Figure 14(b),
the higher initial ball growth in Figure 14(d), and the slight
shift downward inD(k)/D(N) in Figure 14(e). The near-
est neighbor graph in-degree distribution is nearly identical
to that in the real data (see Figure 14(c)). Unlike a simple
5D map, the number of low in-degree nodes in the model
matches well against the real data. The maximal in-degree
achieved in the model is however only 22 compared to 26
in Real Data 1. This variation is not surprising given that
the maximal in-degree is highly sensitive to the exact values

9

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6
x 10

−3

Delay(ms)

P
ro

ba
bi

lit
y

Real Data
Model

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Cutoff(ms)

La
rg

es
t C

lu
st

er
 P

er
ce

nt
ag

e
%

Real Data

Model

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In−degree

P
ro

ba
bi

lit
y

Real Data
Model

(a) (b) (c)

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r(ms)

M
ed

ia
n

B
(2

r)
/B

(r
)

Real Data
Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k/N

D
(k

)/
D

(N
)

Real Data

Model

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RI

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Real Data

Model

(d) (e) (f)

Figure 14: Model vs Real Data 1. (a) Delay distribution. (b) Clustering cutoff. (c) In-degree distribution. (d) Median
B(2r)/B(r). (e) D(k)/D(N). (f) Routing inefficiency distri bution.

of delays. Finally, observe in Figure 14(f) that the routing
inefficiency distributions are also similar. We continue to
investigate different optimization settings in GNP to try to
eliminate the delay shift in the 5D map.

In summary, the model is highly successful at capturing all
the important properties in the measured Internet delay space.

5. SYNTHESIS OF INTERNET DELAY SPACE
System designers wish to evaluate distributed systems at large
scale. As we have shown, using either measured delay data
or our Internet delay space model to drive simulations brings
substantial improvements in realism over topology-models.
However, the achievable scale is still limited by the diffi-
culty of measuring and storing empirical delay data from
more than, say, tens of thousands of nodes. Moreover, sys-
tem designers often wish to vary certain properties of the
delay space in a principled manner, in order to test the ro-
bustness of their designs to such variations. It is difficultto
do this with measured delay data.

In this section, we build upon our empirical understanding
of the Internet delay space and our delay space modeling
techniques and study additional techniques to enable artifi-
cial synthesis of a realistic delay space based on the actual
properties of a measured Internet delay space. The goals are
to (1) allow synthesis of delay spaces at scales that exceed
our capability to measure real data and (2) provide methods
to vary the properties of the synthesized delay space in a

First half of data

Second half of data

First intensity component C1

Support S1 = {bin2}
Remaining support R1 = {bin2}
R1 covers 75% of second half
Weight p1 = 0.75

C2
bin2=2x0.25

Second intensity component C2

Support S2 = {bin1, bin2, bin3}
Remaining support R2 = {bin1, bin3}

R2 covers 25% of second half
Weight p2 = 0.25

C2
bin3=1x0.25

C2
bin1=1x0.25

bin1 bin2 bin3

Intensitybin1 = 0.25 Intensitybin2 = 3.5 Intensitybin3 = 0.25

Sum of component intensities

C1
bin2=4x0.75

Figure 15: Computing intensities in Euclidean map syn-
thesis technique.

principled manner.

5.1 Building Block Techniques
The new techniques introduced in this section exploit the
scaling properties found in the measured Internet delay space
to enable accurate extrapolation to a larger delay space.

Technique 4: Euclidean map synthesis- Given a 5D Eu-
clidean map of an Internet delay space, we seek to capture
its locality and growth characteristics so that we can syn-

10

thesize an artificial map based on these characteristics and
create realistic structure in the synthesized delay space.

A simple idea is to divide the Euclidean space into equal
sized hyper-cubes, count the number of points in each hyper-
cube, and use these counts as relative intensities. With ap-
propriate scaling of the relative intensities, one can synthe-
size an artificial map of a certain size by generating random
points in each hyper-cube according to the intensities using
an inhomogeneous Poisson point process [15, 23]1. Indeed,
this simple method can mimic the point distribution of the
original map and generate realistic overall delay distribution
and global clustering structure. However, this method ig-
nores the growth characteristics in the data. As a result, syn-
thetic points can only appear in hyper-cubes where points
were originally found.

To incorporate growth characteristics, the key idea is to in-
troduce uncertainties in the locations of each point and com-
pute intensities that predict growth. The idea is best ex-
plained with a simple example illustrated in Figure 15. In
the example, there are 8 points in a 1-dimensional Euclidean
space divided into 3 equal size bins. We randomly divide the
points into two halves, the first half happens to lie in bin2,
while the other half is spread across bin1 and bin2. We will
iteratively compute theith intensity component Ci, which
is a vector of intensities for the bins, to predict the growth
observed in the second half. The location uncertainty of a
point in the first half is represented by a Gaussian probabil-
ity distribution with a certain variance or width. To compute
the first intensity componentC1, we place a Gaussian with a
small width w1 that represents a low level of uncertainty in
the center of each bin and scale it by the number of first half
points in the bin. As a result, the 99% bodies of the Gaus-
sians lie within bin2. We call the bins occupied by the 99%
bodies of the Gaussians thesupport of the first component,
S1. We also defined theremaining support of a component
to be the support of the current component subtracted by
the support of the previous component, i.e.Ri = Si\Si−1.
Since this is the first component,R1 is simplyS1.

The intensity I1 generated by the Gaussians is spread in the
3 bins as 0, 4, 0 respectively. Now we ask, how well does
R1 cover the second half of the points? If all points in the
second half are covered byR1 thenI1 can account for the
growth in the second half and we are done. However, in the
example,R1 is only covering 75% of the points in the sec-
ond half. As a result, we weight the intensityI1 by a factor
p1 = 0.75 to obtain the intensity componentC1. Since we
have not completely accounted for the growth in the second
half, we need to increase the location uncertainty and com-
pute the second intensity componentC2. To do so, we use
a wider Gaussian (widthw2) for the second iteration. The

1The number of points lying in any two disjoint sets in space are
independent random numbers distributed according to a Poisson
law with mean given by the intensity.

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

star size

av
er

ag
e

lo
ca

l d
en

si
ty

SampleSize=800

best fit line for SampleSize=800

SampleSize=1600

best fit line for SampleSize=1600

SampleSize=2400

best fit line for SampleSize=2400

SampleSize=3200

best fit line for SampleSize=3200

Figure 16: Average local density vs local cluster (star)
size for different data sample sizes.

aggregate intensity is still 4, but this time, it is spread across
all 3 bins. Suppose the intensities generated in the 3 bins
are 1, 2, 1 respectively. The 99% body of these wider Gaus-
sians occupy all three bins, thus the support of the second
componentS2 is the set{bin1, bin2, bin3}. The remaining
supportR2 is S2\S1, i.e. {bin1, bin3}. The fraction of the
second half covered byR2 is 25%. Thus, the intensityI2 is
weighted byp2 = 0.25 to obtainC2.

This iterative process continues until either all points inthe
second half are covered byRi, or when a maximum Gaus-
sian width has been reached. The intensity of each bin is
simply the sum of all the intensity componentsCi. Finally,
we repeat the procedure to use the second half to predict
the growth in the first half and use the average intensity of
each bin as the final intensity. In practice, we divide the 5D
space into 100 bins in each dimension and vary the Gaus-
sian variance or width from one-tenth to ten times the bin
width. Moreover, we ignore bins with intensity smaller than
a threshold to reduce the memory requirements.

Technique 5: Local cluster size estimation- In Section 3,
we have shown that, for the data sizes that we have studied,
nearly all properties of the Internet delay space we consider
are invariant under scaling. The exception is that the local
cluster sizes grow with scale. It also turns out that the max-
imal local cluster size grows linearly with the delay space
sample size. With this linear relationship, it is easy to esti-
mate the appropriate maximum local cluster size at a partic-
ular scale. What remains unclear is how to assign different
cluster sizes to local cluster centers.

For this, we exploit another relationship that we have dis-
covered: For each sample size, the size of a local cluster is
linearly related to the local node density (i.e., the numberof
nodes within 15ms) around the cluster centers. Figure 16
plots the average local density versus local cluster size (or
star size) for different sample sizes. Exploiting this rela-
tionship, our technique works as follows. First, select the
maximum local cluster size based on the scale. The mini-

11

mum local cluster size is always 1. Assume that we have
already identified a subset of nodes to act as local cluster
centers. We compute the local node densities around the
cluster center. Then, using the maximal and minimal den-
sities, maximal and minimal cluster sizes, and assuming a
linear relationship, we can easily assign a local cluster size
to each center.

5.2 Synthesis Framework
Based on the basic techniques described above and in Sec-
tion 4.1, the overall framework for synthesizing a realistic
delay space is as follows:

Step 1. Perform global clustering on the data to assign nodes
to major clusters. Perform nearest neighbor directed graph
analysis to identify local cluster centers.

Step 2. Compute a 5D Euclidean embedding of the data us-
ing a robust method. In this paper, we use a slightly modified
version of GNP.

Step 3. For each cluster-cluster groupg and Euclidean delay
l, compute the global distortion statisticsPType−1

g,l , PType−2

g,l ,

PType−1&2

g,l , HType−1

g,l , HType−2

g,l using a severe violation
thresholdR.

Step 4. At this point, the original measured data is no longer
needed. Split the 5D Euclidean map into two, one contain-
ing only local cluster centers, and one containing all other
nodes. Based on these two maps, separately synthesize Eu-
clidean maps of local cluster centers and non-centers to the
appropriate scale using the Euclidean map synthesis tech-
nique. Recall that the ratio between these two types of nodes
is invariant. Merge the two resulting synthesized maps back
into one synthesized map.

Step 5. Perform global clustering on synthesized map to as-
sign nodes to major clusters.

Step 6. Assign a local cluster size to each synthesized center
using the local cluster size estimation technique. For each
local cluster centeri, compute the local distortion statistics
ri andti.

Step 7. To compute the synthesized delay between nodei
andj, first compute the Euclidean delay. Apply global dis-
tortion, if necessary, according to the statistics from thereal
data, and finally apply local distortion if necessary. Return
final value.

The above framework can be tuned to synthesize delay spaces
with varying properties. For example, the characteristicsof
the local clusters, the severity of triangle inequality viola-
tions, and even the spatial distribution of nodes can all be
adjusted in a well controlled manner. System designers can
take advantage of this flexibility to evaluate their solutions

under different delay space properties.

5.3 Evaluating Synthesized Delay Data
To evaluate the effectiveness of our synthesis framework, we
compare a synthesized delay space directly against a mea-
sured delay space. To do so, we first extract a 2000 node
random sub-sample from Real Data 1. Then, we apply our
synthesis framework on just this 2000 node sub-sample to
synthesize a delay space with 4150 nodes. If the synthe-
sis framework correctly predicts and preserves the scaling
trends, then the synthetic 4150 nodes delay space should
have properties very similar to those found in Real Data 1
which has 3997 nodes.

The comparison results are displayed in Figure 17. As can
be seen, even though the synthesis is based on a limited
subset of data, the synthesis framework is highly success-
ful at predicting the properties in the 3997 node measured
data. All the important trends are preserved very well, al-
though there are still a few Small differences. For exam-
ple,the 5D map causes a slight shift in delay distribution to-
wards smaller delays. This results in the faster initial ball
growth as seen in Figure 17(d), and the slight shift down-
ward in theD(k)/D(N) metric (Figure 17(e)).

In summary, the synthesis framework is highly effective in
creating realistic delay spaces. Our ultimate goal is to vali-
date the synthesis framework against much larger data sets,
and we continue to work towards this goal by collecting
more measurements in order to gain higher confidence about
the delay space scaling properties.

6. RELATED WORK
Our work on modeling the Internet delay space is comple-
mentary to existing work on modeling network connectivity
topologies. There is an opportunity for future work to incor-
porate delay space characteristics into topology models.

Early artificial network topologies had a straight-forwardcon-
nectivity structure such as tree, star, or ring. A more so-
phisticated topology model that constructs node connectiv-
ity based on the random graph model was proposed by Wax-
man [36]. However, as the hierarchical nature of the Inter-
net connectivity became apparent, solutions that more accu-
rately model this hierarchy, such as Transit-Stub by Calvert
et al [38] and Tier by Doar [8], emerged. Faloutsoset al [9]
studied real Internet topology traces and discovered the power-
law node degree distribution of the Internet. Liet al [13]
further showed that router capacity constraints can be inte-
grated with the power-law node degree model to create even
more realistic router-level topologies.

There are many on-going projects actively collecting delay
measurements of the Internet, including Skitter [29], AMP [2],
PingER [20], and Surveyor [33] to name just a few exam-
ples. Some of these projects also collect one-way delays

12

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6
x 10

−3

Delay(ms)

P
ro

ba
bi

lit
y

Real Data
Synthesized Data

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Cutoff(ms)

La
rg

es
t C

lu
st

er
 P

er
ce

nt
ag

e
%

Real Data

Synthesized Data

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In−degree

P
ro

ba
bi

lit
y

Real Data
Synthesized Data

(a) (b) (c)

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r(ms)

M
ed

ia
n

B
(2

r)
/B

(r
)

Real Data
Synthesized Data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k/N

D
(k

)/
D

(N
)

Real Data

Synthesized Data

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RI

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Real Data

Synthesized Data

(d) (e) (f)

Figure 17: Synthesized vs Real Data 1. (a) Delay distribution. (b) Clustering cutoff. (c) In-degree distribution. (d)
Median B(2r)/B(r). (e) D(k)/D(N). (f) Routing inefficiency distribution.

and hop-by-hop routing information. These projects typi-
cally use a set of monitoring nodes, ranging roughly from
20 to 100, to actively probe a set of destinations. The Skitter
work probes on the order of 1 million destinations, which
is the largest among these projects. The active monitoring
method can probe any destination in the network, but the re-
sulting measurements cover only a small subset of the delay
space as observed by the monitors. Many of these measure-
ments are also continuously collected, allowing the study of
changes in delay over time. Our work uses the King tool
to collect delay measurements, which restricts the probed
nodes to be DNS servers, but produces a symmetric delay
space matrix, which lends itself to a study of the stationary
delay space characteristics.

Some of the delay space properties that we report in this
paper have been observed in previous work. For example,
triangle inequality violations and routing inefficiencieshave
been observed in [26] and [17]. Some of the characteris-
tics of delay distributions and their implications for global
clustering have been observed in Skitter. However, many of
the observations made in this paper are new. These include
the local clustering properties, and in particular the approxi-
mately exponential in-degree distribution, spatial growth prop-
erties, detailed properties of triangle inequality violations of
different types and across different clusters, and the exami-
nation of these properties under scaling. In addition to the
”static” properties of delay, previous work have also studied

the temporal properties of Internet delay [1]. Incorporating
temporal properties into a delay space model is an area for
future work.

One key technique used in our work is computing a low di-
mensional Euclidean embedding of the delay space to en-
hance the completeness and scalability of the delay space
representation. Many approaches for computing such an em-
bedding have been studied [17, 7, 27, 6, 14, 34, 28, 19]. We
have not considered the impact of using different compu-
tation methods or using different embedding objective func-
tions. This represents another area for potential future work.

7. CONCLUSIONS
To the best of our knowledge, this is the first study to sys-
tematically analyze, model, and synthesize realistic Internet
delay spaces. We make two primary contributions in this
work. First, we quantify the properties of the Internet delay
space with respect to a set of metrics relevant to distributed
systems design. This leads to new fundamental understand-
ings of the Internet delay space characteristics, which may
inform future work. Second, we develop a set of building
block techniques to model and synthesize the Internet de-
lay space compactly while accurately preserving all relevant
metrics.

There are many interesting areas for future work. For exam-
ple, how can the edge network delay space characteristics be
integrated with a connectivity topology model so that we can

13

have realistic hop-by-hop delay characteristics? Secondly,
how can we extend the edge network delay space model to
incorporate hosts within each edge network? Finally, how
can the models be extended to handle extremely dense net-
works that are hard to embed accurately in a low dimensional
Euclidean space? Answering these questions should gener-
ate new fundamental insights.

8. REFERENCES
[1] A. Acharya and J. Saltz. A Study of Internet Round-Trip

Delay. Technical Report CS-TR-3736, University of
Maryland, College Park, 1996.

[2] Active measurement project, NLANR. http://watt.nlanr.net.
[3] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and

R. Morris. The Case for Resilient Overlay Networks. In
Proceeedings of HotOS VIII, May 2001.

[4] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony
Rowstron. Exploiting network proximity in peer-to-peer
overlay networks. Technical Report MSR-TR-2002-82,
Microsoft Research, May 2002.

[5] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony
Rowstron. Proximity neighbor selection in tree-based
structured peer-to-peer overlays. Technical Report
MSR-TR-2003-52, Microsoft Research, June 2003.

[6] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical
Internet coordinates for distance estimation. Technical
Report MSR-TR-2003-53, Microsoft Research, September
2003.

[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
decentralized network coordinate system. InProceeding of
ACM SIGCOMM, August 2004.

[8] M. Doar. A better model for generating test networks. In
Proceeding of IEEE GLOBECOM, November 1996.

[9] C. Faloutsos, M. Faloutsos, and P. Faloutsos. On Power-law
Relationships of the Internet Topology. InProceedings of
ACM Sigcomm, August 1999.

[10] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:
Estimating latency between arbitrary internet end hosts. In
Proceedings of the SIGCOMM Internet Measurement
Workshop (IMW 2002), Marseille, France, November 2002.

[11] Krishna P. Gummadi, Ramakrishna Gummadi, Steven D.
Gribble, Sylvia Ratnasamy, Scott Shenker, and Ion Stoica.
The impact of DHT routing geometry on resilience and
proximity. In Proc. ACM SIGCOMM, Karlsruhe, Germany,
August 2003.

[12] David R. Karger and Matthias Ruhl. Finding nearest
neighbors in growth restricted metrics. InProccedings of
ACM Symposium on Theory of Computing, 2002.

[13] L. Li, D. Alderson, W. Willinger, and J. Doyle. A
first-principles approach to understanding the internet’s
router-level topology. InProceeding of ACM SIGCOMM,
August 2004.

[14] H. Lim, J. Hou, and C.-H. Choi. Constructing internet
coordinate system based on delay measurement. In
Proceedings of Internet Measurement Conference, Miami,
FL, October 2003.

[15] Jesper Møller and Rasmus Waagepetersen.Statistical
Inference and Simulation for Spatial Point Processes.
Chapman and Hall/CRC, 2004.

[16] D. Moore, R. Periakaruppan, and J. Donohoe. Where in the
World is netgeo.caida.org. InProceedings of the Internet
Society Conference (INET), 2000.

[17] T. S. E. Ng and H. Zhang. Predicting Internet networking
distance with coordinates-based approaches. InProceedings
of IEEE INFOCOM, June 2002.

[18] p2psim. http://www.pdos.lcs.mit.edu/p2psim/.

[19] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.
Lighthouses for scalable distributed location. InProceedings
of 2nd International Workshop on Peer-to-Peer Systems
(IPTPS ’03), 2003.

[20] PingER. http://www.slac.stanford.edu/comp/net/wan-
mon/tutorial.html.

[21] S. Ranjan, R. Karrer, and E. Knightly. Wide area redirection
of dynamic content by internet data centers. InProceedings
of IEEE INFOCOM, Hong Kong, China, 2004.

[22] S. Ratnasamy, S. Shenker, and I. Stoica. Routing algorithms
for DHTs: Some open questions. InProc. 1st Int’l Workshop
on Peer-to-Peer Systems (IPTPS ’02), Cambridge, MA,
March 2002.

[23] Rolf-Dieter Reiss.A Course on Point Processes. Springer
Series in Statistics. Springer, 1993.

[24] Route views. http://www.routeviews.org/.

[25] B. Bhattacharjee S. Banerjee and C. Kommareddy. Scalable
Application Layer Multicast. InProceedings of ACM
SIGCOMM, August 2002.

[26] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson.
The End-to-end Effects of Internet Path Selection. In
Proceedings of ACM Sigcomm, August 1999.

[27] Y. Shavitt and T. Tankel. Big-bang simulation for embedding
network distances in euclidean space. InProceedings of
IEEE INFOCOM, San Francisco, CA, March 2003.

[28] Y. Shavitt and T. Tankel. On the curvature of the Internet and
its usage for overlay construction and distance estimation. In
Proceedings of IEEE INFOCOM, April 2004.

[29] Skitter. http://www.caida.org/tools/measurement/skitter/.

[30] A. Slivkins. Distributed Approaches to Triangulationand
Embedding. InProceedings 16th ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2004.

[31] A. Slivkins, J. Kleinberg, and T. Wexler. Triangulation and
Embedding using Small Sets of Beacons. InProceedings of
45th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2004.

[32] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. InProceedings of ACM
SIGCOMM, 2001.

[33] Surveyor. http://www.advanced.org/csg-ippm/.

[34] L. Tang and M. Crovella. Virtual landmarks for the internet.
In Proceedings of Internet Measurement Conference, Miami,
FL, October 2003.

[35] Marcel Waldvogel and Roberto Rinaldi. Efficient
Topology-Aware Overlay Network. InFirst Workshop on
Hot Topics in networks (HotNets-I), October 2002.

[36] B. Waxman. Routing of multipoint connections.IEEE J.
Select. Areas Commun., December 1988.

[37] J. Winick and S. Jamin. Inet-3.0: Internet topology generator.
Technical Report UM-CSE-TR-456-02, University of
Michigan, 2002.

[38] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to
Model an Internetwork. InProceedings of IEEE INFOCOM,
March 1996.

[39] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for wide-area fault-tolerant location and
routing.U.C. Berkeley Technical Report
UCB//CSD-01-1141, 2001.

14

