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ABSTRACT 10 ‘ ‘ ‘

The characteristics of packet delays among edge networks in asl: et
the Internet can have a significant impact on the performance o By - - Realbaaz |
and scalability of global-scale distributed systems. Desi st

ers rely on simulation to study design alternatives for such S

systems at scale, which requires an appropriate model of the
Internet delay space. The model must preserve the geom-
etry and density distribution of the delay space, which are !
known, for instance, to influence the effectiveness of self- , ¢
organization algorithms used in overlay networks.
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In this paper, we characterize measured delays between In-
ternet edge networks with respect to a set of relevant nsetric
We show that existing Internet models differ dramatically
from measured delays relative to these metrics. Then, base
on measured data, we derive a model of the Internet delay

space. The model preserves the relevant metrics, alloves for jator [18], is to collect actual delay measurements using a
compact representation, and can be used to synthesize delay,o| sych as King [10]. This approach yields a realistic de-
data for large-scale simulations. Moreover, specific rogtri |5y space. However, due to limitation of the measurement
of the delay space can be adjusted in a principled manner,methodology and thé(N'2) space requirement of a delay

thus allowing systems designers to study the robustness ofyatrix, the scope of measured delay data is limited. For ex-

Figure 1: Delay distribution comparison for different
c§Jlata sets.

their designs to such variations. ample, P2PSim currently comes with a 1%4¥40 delay
space matrix. Moreover, raw measured data often contains
1. INTRODUCTION errors and missing values.

Designers of large-scale distributed systems rely on simul

tion and network emulation to study design alternatives and The second approach is to start with an artificial network
evaluate prototype systems at scale and prior to deploymenttopology model (e.g. [36, 38, 8, 9, 13]) and assign artifi-
To obtain accurate results, such simulations or emulationscial link delays. The delay space is then computed using a
must include a model of the Internet delay space that accu-shortest-path routing algorithm over the topology. Su¢i ar
rately reflects those characteristics of real Internetydislat ficially generated delay models differ dramatically from ac
influence system performance. For example, having realisti tual Internet delay spaces. Figure 1 compares the delay dis-
clustering properties is important because they can infleen  tributions of artificial delay spaces based on the GT-ITM [38
the load balance of delay-optimized overlay systems, andand the Inet [37] topology models against two measured In-
the effectiveness of server placement policies and cachingternet delay spaces. The artificial delay distribution duss
strategies. Having realistic growth characteristics mdie- even remotely resemble that of the measured data. Clearly,
lay space is another key, because the effectiveness of manyhere are rich features in Internet delay spaces that are not
self-organization algorithms depends on growth charmster captured in the artificial delay models.

tics. Many distributed systems are also sensitive to thiéine

ciency of IP routing with respect to delay. Such inefficiency This study addresses the short-comings of existing aphesac

must be realistically reflected in the delay space as well. ~ for obtaining a delay model. First, we quantitatively ana-
lyze measured Internet delay spaces, specifically, thie stat

Currently, two approaches are used to obtain a delay modelround-trip propagation delays among edge networks in the
The first approach, adopted for instance by the P2PSim sim-Internet. Then, we identify a set of metrics that are relevan



to distributed systems design, and characterize the megsur servers, we get a delay space for the corresponding edge net-
Internet delay space with respect to these metrics. Basedworks. Over this time period, we collected two delay space
on these analytical insights, we develop a method to modelmatrices: the Real Data 1 set has 3997 rows and columns
measured Internet delay spaces. The resulting model hasvith a missing data rate of 13 percent, the Real Data 2 set
a highly compacO(N) representation (as opposed to the has 3994 rows and columns with a missing data rate of 10
O(N?) matrix representation) that accurately preserves all percent.

the relevant delay space characteristics, and can inttgol
missing measurements. Next, we describe the measurement process in more detail.

We start from a list of random IP addresses drawn from
Finally, we develop a method to synthesize an artificialylela the prefixes announced in BGP. This data is published by
space based on the properties of a measured delay space¢he Route Views project [24]. For each IP prefix, we per-
The method exploits the scaling characteristics foundén th form a reverse DNS lookup to determine the associated DNS
measurements and makes it possible to synthesize a iealistiservers. Each reverse lookup returns a set of DNS servers
delay space larger than the measured delay space. Moreovet);p,. We keep only the DNS server sets in which at least
specific characteristics in the synthesized delay spacbe&an one server supports recursive queries, since King reqjtires
adjusted in a principled manner, allowing systems desgner If two DNS server setd);p, and D;p; overlap, then only
to study the robustness of their designs to such variations. one of the two sets is kept. If there are more than one server

in a set, then all the servers in the set must be physically
We make two primary contributions in this work: close. We check this by pinging all the servers in the set to

ensure that they have identical RTT from our perspective.

e We systematically quantify the properties of the In-  Finally, among the remaining DNS server sets, we choose
ternet delay space with respect to a set of statistical, one server that supports recursive queries per set to conduc
structural, and routing metrics relevant to distributed our measurements. The RTT between each pair of DNS
systems design. This leads to new fundamental un- servers is measured at least 20 times and no more than 50
derstandings of the Internet delay space characteristicstimes in each direction. If fewer than 20 valid measurements
that may inform future work. are obtained in each direction, the measurement s disgarde

The minimum RTT for each direction is recorded. If the

* We develop a set of building block techniques to model RTT from the two directions disagree by more than 10%,
and synthesize the Internet delay space compactly whilene measurement is discarded. Then we eliminate all values
accurately preserving all relevant metrics. The com- that are smaller than 100 microseconds and greater than 2
pact representation enables accurate and memory effi-saconds since such values are considered too extreme to be
cient network simulations and emulations at large scale.ggsonable and are most likely measurement errors. Finally

we conduct a shortest path analysis over the matrix to elim-

. . . inate edges that are involved in more than 10000 shortest

The r_est of the paper is organized as follows. First, we paths, which indicates a measurement error. Obviously, due

describe our methodology for collecting the Internet delay to measurement errors, many DNS servers must be discarded

space data in Section 2. We motivate the relevant analyticalin the end. In our data éets, we start with a list of 5000 DNS

getr!cs ind presert.our analytlgal .flndm%s in Seg_tlon :;’ r:n servers and in the end obtain roughly a 4000x4000 matrix
ection 4, we exploit our quantitative understanding ot the |, 5 acceptable amount of missing data. To understand

Internet delay space to develop a compact model and eval'the properties in the data sets under scaling, we consider 4

uate its effectiveness. We extend the delay space model tOqifferent random sub-sample sizes: 800, 1600, 2400, and

incorporate technigues to synthesize an a_rtificial delagsp . 3200. To reduce the sensitivity to a particular random sam-
and evaluate the accuracy of the synthesized delay space ”E)Ie, for each sub-sample size, we consider 5 random sets.

Section 5. We summarize the reIaFed WOF" in Section 6 and Results presented in this paper are averaged over these 5 ran
make several concluding remarks in Section 7. dom sets

2. DATA COLLECTION METHODOLOGY In addition to the measured data sets, we also use artificial
Our measured Internet delay space data sets were collectedelays generated by connectivity models for comparisons.
between October 2005 to November 2005 using a slightly The two generators we use are Inet [37] and GT-ITM [38].
modified version of the King [10] tool. King measures the The Inet generator creates a topology that has power-law
RTT between DNS servers. We select random DNS serversnode degree distribution properties. The GT-ITM genera-
from the entire Internet. Only one DNS server is used per or- tor is used to generate a topology based on the Transit-Stub
ganization (as inferred from the domain names). This way, model. Although GT-ITM provides an option to generate tri-
each DNS server in the data set approximates the locationangle inequality violations, we did not use this option. For
of one edge network. By measuring RTT among these DNS Inet, to generate the delays, we use the standard method of



placing nodes randomly on a 2D plane and then use the 2D
Euclidean distance between a pair of connected nodes as the O\'of/b

link latency. For GT-ITM, we assign transit and stub link de- ™o

lays accordingly. In both cases, all pair shortest pathimgut /_
is used to generate the resulting artificial delay space ma- /_
trices. We scale the delays such that the maximum delay ~ iﬁiﬁ

is 1600ms. This constant scaling factor does not affect the

structure of the generated delay spaces, we do this only to
simplify the presentation of results.
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3. ANALYSISOFINTERNET DELAY SPACE
A fundamental problem faced by all data analysis studies is
how to select a sensible set of metrics to characterize the

data. After all, there is virtually an unlimited number of

statistics that one can compute. Keeping in mind that our Figure 2: Nearest neighbor directed graph analysis tech-
objective is to understand the Internet delay space with re- nique.

spect to distributed systems design, we first identify a 6et o

metrics that are known to significantly influence the perfor-

mance of distributed systems. Then, we analyze measuredo the in-degree and thus the load balance among nodes in
Internet delay data with respect to these and other statisti delay-optimized overlay networks (e.g. [5]). For example,
cal and structural properties. The results give new insight dense local clustering can lead to an overlay node having
into the characteristics of the Internet delay space, agyl th an unexpectedly high number of overlay neighbors and can
inform the design of an appropriate model. potentially create a load imbalance in the overlay.

2nd cluster head
3 cluster head
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Not a cluster head; extracted
by cluster 1

3.1 Systems-motivated Metrics Based on the measured delay data, for each node in the de-

We begin by identifying a set of properties of the delay space 12y space, we create a directed edge to the node with the
that are known to strongly influence distributed system de- sSmallest delay. The resulting graph is the nearest neighbor
sign and performance. While there may exist other relevant directed graph. Then, we can analyze the in-degree of nodes
metrics, we believe the chosen set does capture a wide rang? the graph. Moreover, we can use the graph to identify a set

of important issues in distributed systems design and evalu Of local cluster heads (or centers). We select the node with
ation. the highest in-degree as a local cluster head and remove it

and its immediate children from the graph. This step is ap-
Global clustering - This metric characterizes clustering in  plied repeatedly to identify the next local cluster headlunt
the delay space at a macroscopic level. For instance, theno more nodes remain. Since a local cluster resembles a star
continents with the largest concentration of IP subnetaork network, we sometimes simply call it a star. The process is
(North America, Europe and Asia) form recognizable clus- illustrated in Figure 2. The importance of the local cluster
ters in the delay space. This global clustering structure is heads will become clear in subsequent sections.

for instance, relevant to the placement of large data center _ o _ o
and web request redirection algorithms (e.g. [21]). Growth metrics - Distributed nearest neighbor selection is a

hard problem, but efficient algorithms have been identified t
Our algorithm to determine the global clustering works as solve the problem for growth-restricted metric spaces.[12]
follows. Given N nodes in the measured input data, it first These algorithms are used, for instance, in Tapestry [39]
treats each node as a singleton cluster. The algorithm thenand Chord [32] to select overlay neighbors. In a growth-
iteratively finds two closest clusters to merge. The distanc restricted metric space, if the number of nodes with a de-
between two clusters is defined as the average distance belay of at most- from some nodé is B;(r), thenB;(2r) <
tween the nodes in the two clusters. A cutoff delay value c- B;(r), wherec is a constant. We characterize the growth
determines when to stop the merging process. If the dis- properties of the Internet delay space by evaluaki(®-)/B(r).
tance between the two closest clusters is larger than the cut
off, the merging process stops. By varying the cutoff value Another metric based on nearest neighbors is/#ie) met-

and monitoring the resulting cluster sizes, the globaltelus ~ fic. Letd(i, k) be the average delay from a node its &
ing properties can be determined. closest nodes in the delay space @hde the set of nodes,

then D(k) = 37 2 ;cn d(i k). Structured overlay net-
Local clustering - This metric characterizes clusteringinthe works like Chord, Tapestry and Pastry employ proximity
delay space at a microscopic level. It is based on a directedneighbor selection (PNS) to reduce the expected delagktret
graph formed by having each node point to its nearest neigh-S, i.e., the ratio of the delay of an overlay route over the di-
bor in the delay space. This metric is relevant, for instance rect routing delay averaged over all pairs of nodes [11, 4, 22
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Figure 3: Robust dimensionality reduction.

5]. We choose to include thB(k) metric because analysis

have shown that in Tapestry and Pastry, the expected de
stretchsS in the overlay can be predicted based on the fur
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Triangle inequality violations - The triangle inequality state
that given pointsr, y andz in a Euclidean space, the dis-
tancesd;; between points andj satisfyd,. < dyy + dy..

The Internet delay space, however, does not obey the tri-
angle inequality, since Internet routing may not be optimal

Figure 4: 2D coordinates scatter plot comparison.

with respect to delay. Unfortunately, many distributedrnea

est neighbor selection algorithms rely on the assumptiah th apiesie-
the triangle inequality holds [25, 12, 35]. Thus, it is impor )

tant to characterize the frequency and severity of the viola m

tions in the Internet delay space. E

Routing inefficiency - This metric is closely related to tri- 5 af ,
angle inequality violation. In particular, routing ineféocy o f
is the ratio of the delay between two nodes over the delay of iy
the best possible overlay path in the delay space. Some sys- o w W _m T ow me wo
tems [3] exploit overlay routing for performance gain. The

routing inefficiency metric quantifies the maximum possible

delay reduction achievable by such systems.

Figure 5: Clustering results for different sample sizes.

3.2 Structural Properties Figure 4 displays the scatter plots of the 2D Euclidean coor-
InFigure 1, we can observe that the delay distributions®f th  dinates generated for different data sets. The visualrdiffe
measured data sets have certain characteristic peaks. Thignces between the measured data and the topology models
suggests that nodes form clusters in the data. In contrastare striking. It is easy to see that there are three dominant
the delay distributions for the topology models do not indi- clusters in the measured data. Using the NetGeo tool [16],
cate such behavior. Analysis of random data sub-samplesye |earn that the clusters approximately correspond tethre
indicates that the delay distribution is also independént 0 continents: North America, Europe, and Asia. In contrast,
sample size. To visualize the locations of nodes, we embedthe nodes in the topology models tend to cluster around lines
the data sets into a 2D Euclidean space using a robust dimenradiating from the center. It is likely that this patternuks
sionality reduction procedure. The high level idea of dimen  from the tree-like structure of the topology models; howeve
sionality reduction is illustrated in Figure 3. Severalitec g full analysis of this complex patterns is beyond the scope
niques exist to compute such an embedding robustly evenof this paper.

when some missing measurements are present [17, 7, 27,

6, 14, 34]. In this paper, we adopt a slightly modified ver- To quantify the global clustering properties in the meagdure
sion of the GNP [17] method to compute the embedding. data sets, we apply the described global clustering algurit
This modified version simply ignores the missing measure- and plot the percentage of nodes in the largest cluster stgain
ments in the delay space matrix when computing node co- different clustering cut-off thresholds in Figure 5. Retyar
ordinates. GNP uses Landmarks as global reference pointdess of the sample size, the largest cluster’s size incsease
to compute coordinates. We observe that as long as enouglsharply at cutoff values 155ms and 250ms. These sharp in-
random landmarks are chosen, the accuracy of the embedereases are caused by the merging of two major clusters at
ding is not affected by the missing measurements. these thresholds. The steps suggest that there are three maj
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Figure 6: Local cluster analysis. (a) Exponential-like indegree distribution for measured data (log scale). (b) Powe
law-like in-degree distribution for INET and GT-ITM (log-l og scale). (c) Average maximum star size versus sample size,
with best linear fit line.

Sample size | # Cluster heads Percentagé )

800 185 23.1% ¥ ‘ ‘ ‘

1600 363 22.7% s
2400 547 22.8% 77T | ——reapaaz
3200 712 22.3% N it
3997 (all data)| 884 22.1% / *\ | Real Data sample 2400

Median B(21)/B(r)
5

Table 1: Average fraction of nodes classified as cluster
heads in Real Data 1.

0 100 200 300 400 500 600

clusters. By setting the threshold to 120ms, we are able to 1)
effectively classify nodes into the three major clustetseyr
roughly account for 45%, 35%, and 9% of the nodes, re-
spectively. The remaining 11% are nodes that are scattere
outside of the major clusters.

J:igure 7: B(2r)/B(r) metric comparison for different
data sets (log scale).

The global clustering analysis reveals the coarse-grainad-

ture of the delay space. To understand the fine-grained struc

ture, we conduct the nearest neighbor directed graph dsalys B(2r)/B(r) growth of the data sets. We plot the median
on the data sets. Figure 6(a) shows the in-degree distribu-because, unlike the mean, it is insensitive to the extrertie ou
tions for different sample sizes. Observe that the in-degre liers and can better characterize the dominant trends. As ca
distribution for the measured data is nearly exponential ex be seen, the topology models have far higher peak spatial
cept for the extended tail. The maximum in-degree also in- growth than the measured data (note the log scale). In the
creases with the sample size. In contrast, as shown in Fig-measured data, the initial growth is higher when the ball is
ure 6(b), the in-degree distributions for the Inetand GIT  expanding within a major cluster. As soon as the ball radius
topologies follow closely the power-law distribution. Ehi  covers the nodes in each major cluster, growth slows down
implies that while local cluster sizes vary, they vary more as expected. Further more, this growth trend in the measured
mildly in reality than in the topology models. data is invariant across different sample sizes.

We classify the nodes into local cluster heads (or star heads In terms of theD(k) metric, we also observe dramatic dif-
and non-heads using the procedure described in 3.1. Table ferences between topology models and the measured data.
shows that the proportion of nodes in the data that are elassi Figure 8 indicates that in the topology models, from the per-
fied as local cluster heads is independent of the sample sizespective of an observer node, even the nearest nodes have de-
Moreover, as shown in Figure 6(c), the average maximum lays comparable to the overall average delay of all the nodes
local cluster size (or star size) scales linearly with thmsa ~ Thus, delay is a fairly poor differentiator for sorting nede
ple size. These properties will become useful when we turn in the topology models. In contrast, in the measured data,
to the synthesis of delay spaces later in the paper. the delays of nodes from an observer node are more evenly
spread throughout the entire range, thus delay can be used
To conclude our analysis of the structural properties, we tu  as a effective differentiator. Finally, observe that fhék)
to analyzing spatial growth. Figure 7 shows the median metric is invariant across different sample sizes.
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Figure 8: D(k)/D(N) metric comparison for different
data sets.

Figure 9: Type 1 triangle inequality violations for Real
Data 1 (white color is most severe).

3.3 Routing Properties

Figure 10: Type 2 triangle inequality violations for Real
Data 1 (white color is most severe).

in the second largest cluster are next, and so on. Nodes that
do not belong to the three largest clusters are assigned the
largest matrix indices. The top left corner has indices)(0,0

Each point(i, 7) in the plot represents the number of Type 1
violations that the edggj is involved in as a shade of gray.
A black point indicates no violation and a white point in-
dicates the maximum number of violations encountered for
any edge in the analysis. Missing values in the matrix are
drawn as white points.

It is immediately apparent that clustering is very useful fo
classifying triangle inequality violations. It can be sdbat
edges within the same cluster (i.e. the 3 blocks along the
diagonal) tend to have significantly fewer Type 1 violations
(darker) than edges that cross clusters (lighter). Alse, th

We next analyze the measured data sets with respect to propPumber of violations for edges connecting a given pair of

erties related to routing: triangle inequality violatioasd
routing inefficiency. We say that an edgg¢ in the data

clusters is quite homogeneous. Figure 10 shows the corre-
sponding results for Type 2 violations. Here, the trend is

set causes a Type 1 triangle inequality violation if for some reversed: The short edges within a given cluster cause the

nodek, d?‘%_jd” < 1, and it causes a Type 2 violation if
% > 1. Intuitively, better overlay paths can be found

most violations. The number of violations for edges con-
necting a given pair of clusters is again fairly homogeneous
These results imply that, if two nodes are within the same

1] . .
for edges that cause Type 1 violations, and edges that causénajor cluster, then the chance of finding a shorter overlay

Type 2 violations can potentially provide short-cut ovgrla
paths.

For each edgéj, we count the number of Type 1 violations
it causes. To illustrate how the number of triangle inedyali
violations are distributed over the major clusters, we gnés
a matrix in Figure 9 for Real Data 1; the result for Real

path is far lower then when the nodes are in different clus-
ters. Moreover, edges that are used to form better overlay
paths are most likely found inside a cluster.

We show in Figure 11(a) and Figure 11(b) the cumulative
distributions of Type 1 and Type 2 violation ratios for diffe
ent sample sizes. Note that these distributions are indepen

Data 2 is similar. To produce this figure, we first reorga- dent of sample size.

nize the original data matrix by grouping nodes in the same

clusters together, such that the matrix indices of the nodesFigure 11(c) shows the cumulative distributions of routing
in the largest cluster are the smallest, the indices for sode inefficiency (RI) across different sample sizes. The paaént
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Figure 11: (a) Type 1 violation ratios distribution for diff erent sample sizes. (b) Type 2 violation ratios distributia for
different sample sizes. (c) Routing inefficiency distribuibn for different sample sizes.

gain by performing overlay routing is moderate. We observe e None of the above characteristics of the delay space
that as the sample size increases, the Rl increases. This is are accurately reflected in existing Internet topology
due to the fact that as the sample size increases, more short ~ models.

edges that can form better overlay paths are discovered. The

distributions of the underlying triangle inequality vititan 4. MODELING THEINTERNET DELAY SPACE
ratios, however, does not change with sample size as showrUsing measured Internet delay spaces to drive distributed
in Figure 11(a) and (b). Interestingly, we also observe that system simulations allows system designers to evaluaite the
only 42,702 edges among the 6,883,700 possible edges argolutions under the most realistic delay space charatostis
used to construct the better overlay paths. This suggests th However, there are two potential concerns. First of all, mea
there exists some small, low delay "backbone” networks that suring Internet delay spaces is a time consuming and difficul

can be exploited by overlay routing. process. Due to network outages and measurement errors,
there are usually a significant number of missing measure-
3.4 Summary ments. These missing values make it impossible to simulate

In summary, our empirical analysis of the measured Internet the delay characteristics of the network completely. The se
delay spaces between edge networks provides a number obnd potential concern is that tii& N2) storage requirement
new insights: of the matrix representation does not scale gracefully.

To address these concerns, we develop techniques to model
a measured Internet delay space. This model can sensibly
interpolate the missing measurements, and its storage over
head is onyO(N).

e The three continents, North America, Asia and Europe
dominate the coarse-grained cluster structure of the In-
ternet delay space.

e Thein-degree distribution of the directed nearest neigh-

bor graph resembles an exponential distribution, but 4.1 Building Block Techniques

with a long tail; it does not follow a power law. The Technique 1: Low-dimensional Euclidean embedding

maximal in-degree increases with the sample size. The first technique we use is to model an Internet delay
space using a low-dimensional Euclidean embedding. That
is, we compute Euclidean coordinates for each node and use
Euclidean distances to approximate the delays in the delay
space. Such an Euclidean embedding has a scalalie
e The growth metrics clearly reflect the coarse-grained representation. Moreover, previous studies have shown tha

structure of the delay space. The observed spatial growtan Internet delay space can be well approximated by a Eu-

rate is low. clidean embedding with as little as 5 dimensions, and sev-
eral techniques exist to compute such an embedding robustly
even when some missing measurements are present in the
measured delay space [17, 7, 27, 6, 14, 34, 31, 30]. In this
paper, we adopt a slightly modified version of the GNP [17]
method to compute the embedding. This modified version
simply ignores the missing measurements in the delay space
e Lessthan one percent of all edges account for the gainsmatrix when computing node coordinates. GNP uses Land-

in overlay routing delay. marks as global reference points to compute coordinates. We

e The relative number of local clusters appears indepen-
dent of the sample size, though the maximal size of the
clusters increases linearly with the sample size.

e The potential benefit of overlay routing for a pair of
nodesij and the utility of the pair for overlay routing
can be predicted by the clusters whel@nd;j belong
to. The distributions of triangle inequality violation
ratios are independent of the sample size.



suffices to distort only a small subset of node pairs or edges.
The key questions to decide are (1) how many edges to dis-
tort, (2) what distortion distribution to use, and (3) how to
ensure the distortion to an edge is deterministic and repeat
A S BN e — able. The last property ensures that the model always pro-
2 duces the same delay for a given pair of nodes.

Cluster 2

Cluster 3

Cluster 1 K/

The key idea is to identify the edges in the measured data that
P = P o T cause violations above a certain severity threshold, chara
ijjﬂsfjﬁ :sz{jﬁjf&z — terize the distortion distribution for these edges whely the
— are mapped into the 5D Euclidean model, then use this same
distortion distribution to introduce distortions when algd
Figure 12: Global distortion technique. are generated from the 5D embedding. The process is made
deterministic by using the node identifier to generate pseud
random numbers. By choosing different severity thresholds
observe that as long as enough random landmarks are choWe can vary the number of edges that get distorted in the

sen, the accuracy of the embedding is not affected by theMmodel and experimentally determine the threshold that best
missing measurements. matches the empirical data. The technique is illustrated in

Figure 12.
As we will show in Section 4.3, a 5D Euclidean embedding i o ) o
of the measured Internet delay space can preserve some ofVe define a violation severity threshaid AV?'TLOT‘ caused
the key metrics quite well. In the 5D Euclidean map, the Py an edgei;j is severe if for some node, ===+ < R

overall delay distribution, the global clustering propest (called Type 1 violation), or i dikdffikj\ > L (called Type
and the growth metrics are very well preserved. Moreover, 5 yjglation). We then compute the distortion distribution
the accuracy of the 5D Euclidean map is good enough to al- o these special edges and store it along with the coordi-
low a reasonable estimation of missing measurements. Forated of the 5D embedding. The distribution is then used

Real Data 1, the 5D Euclidean map can predict the measuredy jnroduce distortions when generating delays from the 5D
delays to within 50% error for 93.08% of the data. We expect gmpedding. Since the violation characteristics vary dtama

this level of accuracy to hold also for the missing data v&lue jcqly across different cluster-to-cluster groups (asdised
However, a 5D Euclidean map fails to preserve triangle in- i, section 3.3), we compute and store the distortion distri-

equality violations, routing inefficiency, and local cleshg bution separately for each cluster-to-cluster group.
properties.

Euclidean model ype-1

i ) ) ) For each cluster-to-cluster grogpall edges with the same
Obviously, Euclidean embedding cannot preserve triangle sp g clidean model delai (rounded down to the nearest
inequality violations, thus no routing inefficiency. The-Eu 1ms) form a subgroup. For each subgraypl), we com-

clidean map also fails to preserve nodes with high in-degree i the fraction of edges in this subgroup that are involved
in the nearest neighbor directed graph. This is because &, geyere Type 1 violations in the real daﬁ/Typefl and
node cannot have a high number of nearest neighbors in a :

low dimensional Euclidean metric space. Specifically, the g T.'StogﬁrTHﬁp to qh;alrt:_;\cterlée thesrt_aa!ldclala3f/ d|§rtr|—
maximal in-degree is 26 for the real data and only 9 for the ution ot those Ssevere violation e geTsy.peJQm arly, for Type
5D map. Moreover, in the 5D map, there are much fewer 2 violations, we compute the fractidf, and the his-
nodes with in-degree 0 than the real data. For comparison,togramH, /7", We also compute the fraction of edges
we generate random points in a 10D space and the maxi-that incur severe Type 1 and Type 2 violations simultane-
mal in_degree achieved is On|y 6. ThUS, even in a h|gher OUSIy, P;:;Jpe_l&Q. This extra statistical information incurs
dimensional space, h|gh in_degree is not Something that oc-an additional constant Storage overhead for the model.

curs naturally.
Y With these statistics, the model delay with global distorti

To address these limitations of a basic 5D Euclidean model, between node and j is then computed as follows. Draw
we use two additional techniques in order to reconstruct the @ pséudo-random numberin [0,1] based on the IDs of
properties lost as a result of the Euclidean embedding. i andj. Let the Euclidean distance betweemgdg tie
l;; and the cluster-cluster group be Based onP, lyife’ ,
Technique 2: Global distortion - The basic technique to ~ pType—2 Plezfefl&{ and usingp as a random variable,

9g,tij

create triangle inequality violations in the 5D Euclideamd®l  gecide v;/heqfh%r the edgg should be treated as a severe
is to distort the delays computed in the 5D embedding as parttype 1 violation (with probab”iMDlepefl + pType—1&2
9rlij

of a post-processing step. Since the frequency of triamgle i 9k
equality violations in the measured data is relatively $nital



nearest neighbor unless there is a closer node outside of the
o radiusr;. If both ¢ andj are local cluster centers, we pick

o
\ 0 the one with the smaller node identifier as the center and
‘ perform the above steps.
O -
o 4.2 Modeling Framework
| @ oo custorcanar, e Based on the basic techniques described above, the overall
O O || Memeraoeareteter s X framework for modeling a measured Internet delay space is
© © : as follows:

Figure 13: Local distortion technique. Step 1. Perform global clustering on the data to assign nodes
to major clusters. Perform nearest neighbor directed graph
analysis to identify local cluster centers and their sizes.

Typefl
g,l; . . .
(leyjj ]+PJle1p]e = — 1)), or asevere Type 2 violation (with Step 2. Compute a 5D Euclidean embedding of the data us-
pType=2 ing a robust method. In this paper, we use a slightly modified
HA T 2 T 1&2 L;
probability P, ; ype— +P, Jre (W -1)), version of GNP.

or to return the valué;; W|thout d|stort|on Ifthe edgéj is

treated as a severe Type 1 violation, then we use the his-St€P 3. Foreach cluster-cluster grgugnd Euclidean model

togramHType ! and) to draw a value from the histogram delay !, compute the global distortion statlstl(th”pe L
and returh that value. Similarly, if the edge is treated asas P, /"2, P /e~ gIvPe=! HTYP~? using a severe
vere Type 2 violation, then we use the h|stogr&7fy”e 2 V|0Iat|on thresholdR. For each Iocal cluster centgrcom-
instead. pute the local distortion statisties andt;.

By experimenting with different threshol, we have de- Step 4. At this point, the original measured data is no longer
termined that a value of 0.7 produces Type 1 and Type 2 needed. To compute the model delay between @l j,
violation distributions similar to those observed in thalre first compute the Euclidean model delay, then apply global
data. This is also the threshold we use for the remainder ofdistortion if necessary, and finally apply local distortidn
this paper. necessary. Return final value.

Technique 3: Local distortion - To preserve the local clus- ~ The total storage overhead of the modeDigV) and calcu-

tering in the measured data, we introduce additional local lating the delay of an edge at run time is simple.

distortion. The principal idea is to pull some nodes within

a radius around a local cluster center closer to create the4.3 Evaluating the Model

needed in-degree, as illustrated in Figure 13. From the near We evaluate the effectiveness of our modeling framework

est neighbor directed graph analysis on the measured datahy comparing the properties found in Real Data 1 against

we identify local cluster centers and note their sizes. Sup- properties in the resulting model of Real Data 1. Figure 14

pose a local cluster center nodénas a cluster size of; presents our results.

in the original data. We identify the set of its nearest

neighbors X;, in the model after global distortion. Then, we Overall, we can see that all the important trends are pre-

compute a radius; asmaz;cx, (d;;), and a threshold; as served by the model very well. As expected, there are some

min; ke x, (d;x)—e. Currently,eis set ta).01-min; xex, (d;i). Small discrepancies. We believe the primary reason for the

Then we associate the valuesandt; with node: in the discrepancies is a slight shift in the overall delay disttiitin

model. r; is essentially the radius within which distortion in the 5D Euclidean map. This can be seen in Figure 14(a),

may be necessary; is the delay needed to beat the smallest as there are fewer long delays and more short delays in the

delay among the nodes iki;. This additional information model than in the real data. The impact of this shift is ob-

adds a constant storage overhead. served in the shifted cluster merging points in Figure 14(b)
the higher initial ball growth in Figure 14(d), and the sligh

The model delay with local distortion between nadend j shift downward inD(k)/D(N) in Figure 14(e). The near-

is then computed as follows. Suppose the delay for the edgeest neighbor graph in-degree distribution is nearly idwhti

ij after global distortion is;;. If neitheri nor j is a local to that in the real data (see Figure 14(c)). Unlike a simple
cluster centerl;; is returned. Supposgeis a local cluster 5D map, the number of low in-degree nodes in the model
center and is not, then ifl;; < r;, we returnmin(t;, l;;); matches well against the real data. The maximal in-degree

otherwise, we retur;. Thet; threshold is used to ensure achieved in the model is however only 22 compared to 26
that the nodes itX; cannot choose one another as their near- in Real Data 1. This variation is not surprising given that
est neighbors. After the distortion, they will choasas their the maximal in-degree is highly sensitive to the exact \&lue
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Figure 14: Model vs Real Data 1. (a) Delay distribution. (b) Qustering cutoff. (c) In-degree distribution. (d) Median
B(2r)/B(r). (e) D(k)/D(N). (f) Routing inefficiency distri bution.

of delays. Finally, observe in Figure 14(f) that the routing . ., o O™ bin2 bin3
inefficiency distributions are also similar. We continue to ™"~ T O0TO0— ‘
o 00—0— x

investigate different optimization settings in GNP to toy t ‘ ‘
eliminate the delay shift in the 5D map.

First intensity component C,

. . X Support S, = {bin2} C,Pn2=4x0.75
In summary, the model is highly successful at capturing all  Remaining support R, = (bin2}
. . . R, covers 75% of second half
the important properties in the measured Internet delagespa  weight p, - 0.75

T

T T

5. SYNTHESISOFINTERNETDELAY SPACE  Sioorerton e o’
System designers wish to evaluate distributed Systemsgat a1 covere oo seconcnat - |
scale. As we have shown, using either measured delay data **" =%
or our Internet delay space model to drive simulations kwing component ntensites

substantial improvements in realism over topology-madels Intensity,y,  0.25 Intensity,,; 3.5 Intensityy, = 0.25
However, the achievable scale is still limited by the diffi- ‘ ‘ ‘ ‘

culty of measuring and storing empirical delay data from

more than, say, tens of thousands of nodes. Moreover, sysFigure 15: Computing intensities in Euclidean map syn-
tem designers often wish to vary certain properties of the thesis technique.

delay space in a principled manner, in order to test the ro-
bustness of their designs to such variations. It is diffitmlt
do this with measured delay data.

C,5M=1x0.25

bin3_
C,2=2x0.25 C;ri=1x0.25

principled manner.

In this section, we build upon our empirical understanding 5.1  Building Block Techniques

of the Internet delay space and our delay space modelingThe new techniques introduced in this section exploit the
techniques and study additional techniques to enable-artifi scaling properties found in the measured Internet delagespa
cial synthesis of a realistic delay space based on the actual to enable accurate extrapolation to a larger delay space.
properties of a measured Internet delay space. The goals are

to (1) allow synthesis of delay spaces at scales that exceedlechnique 4: Euclidean map synthesis Given a 5D Eu-

our capability to measure real data and (2) provide methodsclidean map of an Internet delay space, we seek to capture
to vary the properties of the synthesized delay space in aits locality and growth characteristics so that we can syn-
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thesize an artificial map based on these characteristics and
create realistic structure in the synthesized delay space.

A simple idea is to divide the Euclidean space into equal
sized hyper-cubes, count the number of points in each hyper-
cube, and use these counts as relative intensities. With ap-
propriate scaling of the relative intensities, one cantsynt
size an artificial map of a certain size by generating random
points in each hyper-cube according to the intensitiesgusin
an inhomogeneous Poisson point process [15,. 28feed,

this simple method can mimic the point distribution of the
original map and generate realistic overall delay distrdru

and global clustering structure. However, this method ig- Figure 16: Average local density vs local cluster (star)
nores the growth characteristics in the data. As a resuit, sy size for different data sample sizes.

thetic points can only appear in hyper-cubes where points

were originally found.

) o ) ) _aggregate intensity is still 4, but this time, it is spreacbas
To incorporate growth characteristics, the key idea is t0 in 4| 3 pins. Suppose the intensities generated in the 3 bins
troduce uncertainties in the locations of each pointand-com 4. 1, 2, 1 respectively. The 99% body of these wider Gaus-
pute intensities that predict growth. The idea is best ex- gjans occupy all three bins, thus the support of the second
plained with a simple example illustrated in Figure 15. In componentS, is the set{bin1, bin2, bin3. The remaining
the example, there are 8 points in a 1-dimensional EuclideansupportR2 is S5\ S1, i.e. {binl, bin3. The fraction of the

space divided into 3 equal size bins. We randomly divide the gacond half covered bR, is 25%. Thus, the intensitls is
points into two halves, the first half happens to lie in bin2, weighted byp, = 0.25 to obtainCs.

while the other half is spread across binl and bin2. We will

iteratively compute theé’” intensity component C;, which This iterative process continues until either all pointshia

is a vector of intensities for the bins, to predict the growth second half are covered by;, or when a maximum Gaus-
observed in the second half. The location uncertainty of a sjan width has been reached. The intensity of each bin is
point in the first half is represented by a Gaussian probabil- simply the sum of all the intensity componeidts Finally,

ity distribution with a certain variance or width. To comput  we repeat the procedure to use the second half to predict
the first intensity componeidt;, we place a Gaussianwitha  the growth in the first half and use the average intensity of
smallwidth w; that represents a low level of uncertainty in  each bin as the final intensity. In practice, we divide the 5D
the center of each bin and scale it by the number of first half space into 100 bins in each dimension and vary the Gaus-
points in the bin. As a result, the 99% bodies of the Gaus- sjan variance or width from one-tenth to ten times the bin
sians lie within bin2. We call the bins occupied by the 99% width. Moreover, we ignore bins with intensity smaller than

bodies of the Gaussians tlsepport of the first component, a threshold to reduce the memory requirements_
S1. We also defined theemaining support of a component

to be the support of the current component subtracted by Technique 5: Local cluster size estimation In Section 3,
the support of the previous component, if&. = S;\\S;_1. we have shown that, for the data sizes that we have studied,
Since this is the first compone®; is simply .S;. nearly all properties of the Internet delay space we conside
are invariant under scaling. The exception is that the local
Theintensity I; generated by the Gaussians is spread in the cluster sizes grow with scale. It also turns out that the max-
3 bins as 0, 4, 0 respectively. Now we ask, how well does jmal local cluster size grows linearly with the delay space
Ry cover the second half of the points? If all points in the sample size. With this linear relationship, it is easy td-est
second half are covered ky; then/; can account for the  mate the appropriate maximum local cluster size at a partic-
growth in the second half and we are done. However, in the ylar scale. What remains unclear is how to assign different
example,R?; is only covering 75% of the points in the sec- cluster sizes to local cluster centers.
ond half. As a result, we weight the intensity by a factor
p1 = 0.75 to obtain the intensity compone@Y. Since we For this, we exploit another relationship that we have dis-
have not completely accounted for the growth in the second covered: For each sample size, the size of a local cluster is
half, we need to increase the location uncertainty and com-linearly related to the local node density (i.e., the nundfer
pute the second intensity componént To do so, we use  nodes within 15ms) around the cluster centers. Figure 16
a wider Gaussian (width,) for the second iteration. The plots the average local density versus local cluster size (o

"The number of points lying in any two disjoint sets in space ar star size) for different sample sizes. Exploiting this +ela

independent random numbers distributed according to aséois tions_hip, our technique v_vorks as follows. First, select t_he_r
law with mean given by the intensity. maximum local cluster size based on the scale. The mini-
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mum local cluster size is always 1. Assume that we have under different delay space properties.

already identified a subset of nodes to act as local cluster

centers. We compute the local node densities around the5.3 Evaluating Synthesized Delay Data

cluster center. Then, using the maximal and minimal den- To evaluate the effectiveness of our synthesis framewoek, w
sities, maximal and minimal cluster sizes, and assuming acompare a synthesized delay space directly against a mea-
linear relationship, we can easily assign a local cluste si sured delay space. To do so, we first extract a 2000 node

to each center. random sub-sample from Real Data 1. Then, we apply our
synthesis framework on just this 2000 node sub-sample to
5.2 Synthesis Framework synthesize a delay space with 4150 nodes. If the synthe-

Based on the basic techniques described above and in Se(,@is framework correctly predicts and preserves the scaling
tion 4.1, the overall framework for synthesizing a reatisti  '€Nds, then the synthetic 4150 nodes delay space should
delay space is as follows: have properties very similar to those found in Real Data 1

which has 3997 nodes.

Step 1. Perform global clustering on the data to assign nodes

to major clusters. Perform nearest neighbor directed graph ! N comparison results are displayed in Figure 17. As can
analysis to identify local cluster centers. be seen, even though the synthesis is based on a limited

subset of data, the synthesis framework is highly success-

Step 2. Compute a 5D Euclidean embedding of the data us-ful at predicting the properties in the 3997 node measured

ing a robust method. In this paper, we use a slightly modified data. All the important trends are preserved very well, al-
version of GNP. though there are still a few Small differences. For exam-

ple,the 5D map causes a slight shift in delay distributien to
Step 3. For each cluster-cluster grapiand Euclidean delay ~ wards smaller delays. This results in the faster initial bal
1, compute the global distortion statistiBgfpe‘l,P;;’pe‘z, growth as seen in Figure 17(d), and the slight shift down-
R(]leypefl&{ Hg?pefli HgTj;pe% using a severe violation ward in theD(k)/D(N) metric (Figure 17(e)).
thresholdr. In summary, the synthesis framework is highly effective in

Step 4. At this point, the original measured data is no longer creating realistic delay spaces. Our ultimate goal is té val

needed. Split the 5D Euclidean map into two, one contain- date the synthesis framework against_much larger data_sets,
ing only local cluster centers, and one containing all other 21d We continue to work towards this goal by collecting
nodes. Based on these two maps, separately synthesize EJT'OT® measurements in order to_galn higher confidence about
clidean maps of local cluster centers and non-centers to theth® delay space scaling properties.

appropriate scale using the Euclidean map synthesis tech-

nigue. Recall that the ratio between these two types of nodesG- RELATED WORK

is invariant. Merge the two resulting synthesized maps back Our work on modeling the Internet delay space is comple-
into one synthesized map. mentary to existing work on modeling network connectivity

topologies. There is an opportunity for future work to incor
Step 5. Perform global clustering on synthesized map to as-porate delay space characteristics into topology models.

sign nodes to major clusters. - ) )
Early artificial network topologies had a straight-forwaooh-

Step 6. Assign a local cluster size to each synthesizedrcentenectivity structure such as tree, star, or ring. A more so-
using the local cluster size estimation technique. For eachphisticated topology model that constructs node connectiv
local cluster centet, compute the local distortion statistics ity based on the random graph model was proposed by Wax-
r; andt;. man [36]. However, as the hierarchical nature of the Inter-
net connectivity became apparent, solutions that more-accu
Step 7. To compute the synthesized delay between node rately model this hierarchy, such as Transit-Stub by Calver
andj, first compute the Euclidean delay. Apply global dis- et al [38] and Tier by Doar [8], emerged. Faloutsisl [9]
tortion, if necessary, according to the statistics fromrtrad studied real Internet topology traces and discovered thepo
data, and finally apply local distortion if necessary. Retur law node degree distribution of the Internet. dtial [13]
final value. further showed that router capacity constraints can be inte
grated with the power-law node degree model to create even
The above framework can be tuned to synthesize delay spacesore realistic router-level topologies.
with varying properties. For example, the characteristics
the local clusters, the severity of triangle inequalitylaio ~ There are many on-going projects actively collecting delay
tions, and even the spatial distribution of nodes can all be measurements of the Internet, including Skitter [29], AMR [
adjusted in a well controlled manner. System designers canPingER [20], and Surveyor [33] to hame just a few exam-
take advantage of this flexibility to evaluate their solofo  ples. Some of these projects also collect one-way delays
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Figure 17: Synthesized vs Real Data 1. (a) Delay distributim (b) Clustering cutoff. (c) In-degree distribution. (d)
Median B(2r)/B(r). (e) D(k)/D(N). (f) Routing inefficiency distribution.

and hop-by-hop routing information. These projects typi- the temporal properties of Internet delay [1]. Incorpargti
cally use a set of monitoring nodes, ranging roughly from temporal properties into a delay space model is an area for
20to 100, to actively probe a set of destinations. The Skitte future work.

work probes on the order of 1 million destinations, which

is the largest among these projects. The active monitoring One key technique used in our work is computing a low di-
method can probe any destination in the network, but the re-mensional Euclidean embedding of the delay space to en-
sulting measurements cover only a small subset of the delayhance the completeness and scalability of the delay space
space as observed by the monitors. Many of these measurerepresentation. Many approaches for computing such an em-
ments are also continuously collected, allowing the study o bedding have been studied [17, 7, 27, 6, 14, 34, 28, 19]. We
changes in delay over time. Our work uses the King tool have not considered the impact of using different compu-
to collect delay measurements, which restricts the probedtation methods or using different embedding objective func
nodes to be DNS servers, but produces a symmetric delaytions. This represents another area for potential futuréwo
space matrix, which lends itself to a study of the stationary

delay space characteristics. 7. CONCLUSIONS

To the best of our knowledge, this is the first study to sys-
Some of the delay space properties that we report in thistematically analyze, model, and synthesize realisticrire
paper have been observed in previous work. For example,delay spaces. We make two primary contributions in this
triangle inequality violations and routing inefficienclesve work. First, we quantify the properties of the Internet gela
been observed in [26] and [17]. Some of the characteris- space with respect to a set of metrics relevant to distribute
tics of delay distributions and their implications for gidb ~ systems design. This leads to new fundamental understand-
clustering have been observed in Skitter. However, many of ings of the Internet delay space characteristics, which may
the observations made in this paper are new. These includenform future work. Second, we develop a set of building
the local clustering properties, and in particular the agpr block techniques to model and synthesize the Internet de-
mately exponential in-degree distribution, spatial gfopriop-  lay space compactly while accurately preserving all redeva
erties, detailed properties of triangle inequality viadat of metrics.
different types and across different clusters, and the exam
nation of these properties under scaling. In addition to the There are many interesting areas for future work. For exam-

"static” properties of delay, previous work have also stadi ~ Ple, how can the edge network delay space characteristics be
integrated with a connectivity topology model so that we can
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have realistic hop-by-hop delay characteristics? Segpndl [18] p2psim. http://www.pdos.lcs.mit.edu/p2psim/.
how can we extend the edge network delay space model to[19] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatt

incorporate hosts within each edge network? Finally, how
can the models be extended to handle extremely dense net-
works that are hard to embed accurately in a low dimensional
Euclidean space? Answering these questions should gener-

ate new fundamental insights.
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