Spatially-Resolved Photoluminescence of Monolayer MoS2 under Controlled Environment for Ambient Optoelectronic Applications

dc.citation.firstpage6226en_US
dc.citation.issueNumber11en_US
dc.citation.journalTitleACS Applied Nano Materialsen_US
dc.citation.lastpage6235en_US
dc.citation.volumeNumber1en_US
dc.contributor.authorBirmingham, Blakeen_US
dc.contributor.authorYuan, Jiangtanen_US
dc.contributor.authorFilez, Matthiasen_US
dc.contributor.authorFu, Donglongen_US
dc.contributor.authorHu, Jonathanen_US
dc.contributor.authorLou, Junen_US
dc.contributor.authorScully, Marlan O.en_US
dc.contributor.authorWeckhuysen, Bert M.en_US
dc.contributor.authorZhang, Zhenrongen_US
dc.date.accessioned2019-01-24T16:07:58Zen_US
dc.date.available2019-01-24T16:07:58Zen_US
dc.date.issued2018en_US
dc.description.abstractMonolayer (ML) MoS2 has become a very promising two-dimensional material for photorelated applications, potentially serving as the basis for an ultrathin photodetector, switching device, or transistors because of its strong interaction with light in ambient conditions. Establishing the impact of individual ambient gas components on the optical properties of MoS2 is a necessary step toward application development. By using in situ Raman microspectroscopy with an environment-controlled reaction cell, the photoluminescence (PL) intensity of chemical vapor deposition (CVD)-grown MoS2 MLs is monitored at different intralayer locations under ambient and controlled gas environments, such as N2, O2, and H2O. This new approach enables us to monitor the optical properties of MoS2 at different locations on the flakes and separate the role of photoreaction of various gases during laser irradiation. Upon mild photoirradiation in ambient conditions, the PL intensity in the interior of the ML MoS2 flakes remains unchanged, while the PL intensity at the edge region increases drastically. Photoirradiation in controlled gas environments reveals that O2 is necessary to increase the PL intensity at the MoS2 flake edges, attributed to the charge transfer of chemisorbed O2. N2 or H2O and N2 environments induce decreasing PL intensity upon repetitive laser irradiation. However, the H2O and O2 gas mixture, a combination designed to mimic ambient conditions, is necessary to maintain the PL intensity at the interior of the ML MoS2 flakes. Our study demonstrates that photoreactions with the gaseous environment on the MoS2 ML flakes should be taken into consideration even upon mild photoirradiation because they strongly impact the flakes’ optical properties.en_US
dc.identifier.citationBirmingham, Blake, Yuan, Jiangtan, Filez, Matthias, et al.. "Spatially-Resolved Photoluminescence of Monolayer MoS2 under Controlled Environment for Ambient Optoelectronic Applications." <i>ACS Applied Nano Materials,</i> 1, no. 11 (2018) American Chemical Society: 6226-6235. https://doi.org/10.1021/acsanm.8b01422.en_US
dc.identifier.digitalPhotoluminescenceen_US
dc.identifier.doihttps://doi.org/10.1021/acsanm.8b01422en_US
dc.identifier.urihttps://hdl.handle.net/1911/105121en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsThis is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.en_US
dc.rights.urihttps://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlen_US
dc.subject.keywordchemical dopingen_US
dc.subject.keywordin situ Raman microspectroscopyen_US
dc.subject.keywordmonolayer molybdenum disulfideen_US
dc.subject.keywordphotoluminescenceen_US
dc.subject.keywordphotoreactionen_US
dc.titleSpatially-Resolved Photoluminescence of Monolayer MoS2 under Controlled Environment for Ambient Optoelectronic Applicationsen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Photoluminescence.pdf
Size:
3.68 MB
Format:
Adobe Portable Document Format