Surface Houghton groups

dc.citation.firstpage4301en_US
dc.citation.journalTitleMathematische Annalenen_US
dc.citation.lastpage4318en_US
dc.citation.volumeNumber389en_US
dc.contributor.authorAramayona, Javieren_US
dc.contributor.authorBux, Kai-Uween_US
dc.contributor.authorKim, Heejoungen_US
dc.contributor.authorLeininger, Christopher J.en_US
dc.date.accessioned2024-10-08T13:27:48Zen_US
dc.date.available2024-10-08T13:27:48Zen_US
dc.date.issued2024en_US
dc.description.abstractFor every $$n\ge 2$$, the surface Houghton group $${\mathcal {B}}_n$$is defined as the asymptotically rigid mapping class group of a surface with exactly n ends, all of them non-planar. The groups $${\mathcal {B}}_n$$are analogous to, and in fact contain, the braided Houghton groups. These groups also arise naturally in topology: every monodromy homeomorphism of a fibered component of a depth-1 foliation of closed 3-manifold is conjugate into some $${\mathcal {B}}_n$$. As countable mapping class groups of infinite type surfaces, the groups $$\mathcal {B}_n$$lie somewhere between classical mapping class groups and big mapping class groups. We initiate the study of surface Houghton groups proving, among other things, that $$\mathcal {B}_n$$is of type $$\text {F}_{n-1}$$, but not of type $$\text {FP}_{n}$$, analogous to the braided Houghton groups.en_US
dc.identifier.citationAramayona, J., Bux, K.-U., Kim, H., & Leininger, C. J. (2024). Surface Houghton groups. Mathematische Annalen, 389(4), 4301–4318. https://doi.org/10.1007/s00208-023-02751-2en_US
dc.identifier.digitals00208-023-02751-2en_US
dc.identifier.doihttps://doi.org/10.1007/s00208-023-02751-2en_US
dc.identifier.urihttps://hdl.handle.net/1911/117920en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleSurface Houghton groupsen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s00208-023-02751-2.pdf
Size:
362.77 KB
Format:
Adobe Portable Document Format