Surface Houghton groups
dc.citation.firstpage | 4301 | en_US |
dc.citation.journalTitle | Mathematische Annalen | en_US |
dc.citation.lastpage | 4318 | en_US |
dc.citation.volumeNumber | 389 | en_US |
dc.contributor.author | Aramayona, Javier | en_US |
dc.contributor.author | Bux, Kai-Uwe | en_US |
dc.contributor.author | Kim, Heejoung | en_US |
dc.contributor.author | Leininger, Christopher J. | en_US |
dc.date.accessioned | 2024-10-08T13:27:48Z | en_US |
dc.date.available | 2024-10-08T13:27:48Z | en_US |
dc.date.issued | 2024 | en_US |
dc.description.abstract | For every $$n\ge 2$$, the surface Houghton group $${\mathcal {B}}_n$$is defined as the asymptotically rigid mapping class group of a surface with exactly n ends, all of them non-planar. The groups $${\mathcal {B}}_n$$are analogous to, and in fact contain, the braided Houghton groups. These groups also arise naturally in topology: every monodromy homeomorphism of a fibered component of a depth-1 foliation of closed 3-manifold is conjugate into some $${\mathcal {B}}_n$$. As countable mapping class groups of infinite type surfaces, the groups $$\mathcal {B}_n$$lie somewhere between classical mapping class groups and big mapping class groups. We initiate the study of surface Houghton groups proving, among other things, that $$\mathcal {B}_n$$is of type $$\text {F}_{n-1}$$, but not of type $$\text {FP}_{n}$$, analogous to the braided Houghton groups. | en_US |
dc.identifier.citation | Aramayona, J., Bux, K.-U., Kim, H., & Leininger, C. J. (2024). Surface Houghton groups. Mathematische Annalen, 389(4), 4301–4318. https://doi.org/10.1007/s00208-023-02751-2 | en_US |
dc.identifier.digital | s00208-023-02751-2 | en_US |
dc.identifier.doi | https://doi.org/10.1007/s00208-023-02751-2 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/117920 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer Nature | en_US |
dc.rights | Except where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder. | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.title | Surface Houghton groups | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | publisher version | en_US |
Files
Original bundle
1 - 1 of 1