Limit-periodic Schrödinger operators with Lipschitz continuous IDS
dc.citation.firstpage | 1531 | en_US |
dc.citation.journalTitle | Proceedings of the American Mathematical Society | en_US |
dc.citation.lastpage | 1539 | en_US |
dc.citation.volumeNumber | 147 | en_US |
dc.contributor.author | Damanik, David | en_US |
dc.contributor.author | Fillman, Jake | en_US |
dc.date.accessioned | 2019-08-21T19:16:16Z | en_US |
dc.date.available | 2019-08-21T19:16:16Z | en_US |
dc.date.issued | 2019 | en_US |
dc.description.abstract | We show that there exist limit-periodic Schrödinger operators such that the associated integrated density of states is Lipschitz continuous. These operators arise in the inverse spectral theoretic KAM approach of Pöschel. | en_US |
dc.identifier.citation | Damanik, David and Fillman, Jake. "Limit-periodic Schrödinger operators with Lipschitz continuous IDS." <i>Proceedings of the American Mathematical Society,</i> 147, (2019) American Mathematical Society: 1531-1539. https://doi.org/10.1090/proc/14354 . | en_US |
dc.identifier.doi | https://doi.org/10.1090/proc/14354 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/106271 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.rights | This is an author's version of the manuscript. The published article is copyrighted by the authors. | en_US |
dc.title | Limit-periodic Schrödinger operators with Lipschitz continuous IDS | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | pre-print | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1801.01867.pdf
- Size:
- 154.79 KB
- Format:
- Adobe Portable Document Format
- Description: