Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field

dc.citation.articleNumber7383en_US
dc.citation.journalTitleNature Communicationsen_US
dc.citation.volumeNumber14en_US
dc.contributor.authorGuo, Weihuaen_US
dc.contributor.authorZhang, Siweien_US
dc.contributor.authorZhang, Junjieen_US
dc.contributor.authorWu, Haoranen_US
dc.contributor.authorMa, Yangboen_US
dc.contributor.authorSong, Yunen_US
dc.contributor.authorCheng, Leen_US
dc.contributor.authorChang, Liangen_US
dc.contributor.authorLi, Gengen_US
dc.contributor.authorLiu, Yongen_US
dc.contributor.authorWei, Guodanen_US
dc.contributor.authorGan, Linen_US
dc.contributor.authorZhu, Minghuien_US
dc.contributor.authorXi, Shiboen_US
dc.contributor.authorWang, Xueen_US
dc.contributor.authorYakobson, Boris I.en_US
dc.contributor.authorTang, Ben Zhongen_US
dc.contributor.authorYe, Ruquanen_US
dc.date.accessioned2024-05-03T15:51:18Zen_US
dc.date.available2024-05-03T15:51:18Zen_US
dc.date.issued2023en_US
dc.description.abstractRegulating electron transport rate and ion concentrations in the local microenvironment of active site can overcome the slow kinetics and unfavorable thermodynamics of CO2 electroreduction. However, simultaneous optimization of both kinetics and thermodynamics is hindered by synthetic constraints and poor mechanistic understanding. Here we leverage laser-assisted manufacturing for synthesizing CuxO bipyramids with controlled tip angles and abundant nanograins, and elucidate the mechanism of the relationship between electron transport/ion concentrations and electrocatalytic performance. Potassium/OH− adsorption tests and finite element simulations corroborate the contributions from strong electric field at the sharp tip. In situ Fourier transform infrared spectrometry and differential electrochemical mass spectrometry unveil the dynamic evolution of critical *CO/*OCCOH intermediates and product profiles, complemented with theoretical calculations that elucidate the thermodynamic contributions from improved coupling at the Cu+/Cu2+ interfaces. Through modulating the electron transport and ion concentrations, we achieve high Faradaic efficiency of 81% at ~900 mA cm−2 for C2+ products via CO2RR. Similar enhancement is also observed for nitrate reduction reaction (NITRR), achieving 81.83 mg h−1 ammonia yield rate per milligram catalyst. Coupling the CO2RR and NITRR systems demonstrates the potential for valorizing flue gases and nitrate wastes, which suggests a practical approach for carbon-nitrogen cycling.en_US
dc.identifier.citationGuo, W., Zhang, S., Zhang, J., Wu, H., Ma, Y., Song, Y., Cheng, L., Chang, L., Li, G., Liu, Y., Wei, G., Gan, L., Zhu, M., Xi, S., Wang, X., Yakobson, B. I., Tang, B. Z., & Ye, R. (2023). Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field. Nature Communications, 14(1), 7383. https://doi.org/10.1038/s41467-023-43303-1en_US
dc.identifier.digitals41467-023-43303-1en_US
dc.identifier.doihttps://doi.org/10.1038/s41467-023-43303-1en_US
dc.identifier.urihttps://hdl.handle.net/1911/115616en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleAccelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric fielden_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-023-43303-1.pdf
Size:
2.77 MB
Format:
Adobe Portable Document Format