Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field

dc.citation.articleNumber7383
dc.citation.journalTitleNature Communications
dc.citation.volumeNumber14
dc.contributor.authorGuo, Weihua
dc.contributor.authorZhang, Siwei
dc.contributor.authorZhang, Junjie
dc.contributor.authorWu, Haoran
dc.contributor.authorMa, Yangbo
dc.contributor.authorSong, Yun
dc.contributor.authorCheng, Le
dc.contributor.authorChang, Liang
dc.contributor.authorLi, Geng
dc.contributor.authorLiu, Yong
dc.contributor.authorWei, Guodan
dc.contributor.authorGan, Lin
dc.contributor.authorZhu, Minghui
dc.contributor.authorXi, Shibo
dc.contributor.authorWang, Xue
dc.contributor.authorYakobson, Boris I.
dc.contributor.authorTang, Ben Zhong
dc.contributor.authorYe, Ruquan
dc.date.accessioned2024-05-03T15:51:18Z
dc.date.available2024-05-03T15:51:18Z
dc.date.issued2023
dc.description.abstractRegulating electron transport rate and ion concentrations in the local microenvironment of active site can overcome the slow kinetics and unfavorable thermodynamics of CO2 electroreduction. However, simultaneous optimization of both kinetics and thermodynamics is hindered by synthetic constraints and poor mechanistic understanding. Here we leverage laser-assisted manufacturing for synthesizing CuxO bipyramids with controlled tip angles and abundant nanograins, and elucidate the mechanism of the relationship between electron transport/ion concentrations and electrocatalytic performance. Potassium/OH− adsorption tests and finite element simulations corroborate the contributions from strong electric field at the sharp tip. In situ Fourier transform infrared spectrometry and differential electrochemical mass spectrometry unveil the dynamic evolution of critical *CO/*OCCOH intermediates and product profiles, complemented with theoretical calculations that elucidate the thermodynamic contributions from improved coupling at the Cu+/Cu2+ interfaces. Through modulating the electron transport and ion concentrations, we achieve high Faradaic efficiency of 81% at ~900 mA cm−2 for C2+ products via CO2RR. Similar enhancement is also observed for nitrate reduction reaction (NITRR), achieving 81.83 mg h−1 ammonia yield rate per milligram catalyst. Coupling the CO2RR and NITRR systems demonstrates the potential for valorizing flue gases and nitrate wastes, which suggests a practical approach for carbon-nitrogen cycling.
dc.identifier.citationGuo, W., Zhang, S., Zhang, J., Wu, H., Ma, Y., Song, Y., Cheng, L., Chang, L., Li, G., Liu, Y., Wei, G., Gan, L., Zhu, M., Xi, S., Wang, X., Yakobson, B. I., Tang, B. Z., & Ye, R. (2023). Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field. Nature Communications, 14(1), 7383. https://doi.org/10.1038/s41467-023-43303-1
dc.identifier.digitals41467-023-43303-1
dc.identifier.doihttps://doi.org/10.1038/s41467-023-43303-1
dc.identifier.urihttps://hdl.handle.net/1911/115616
dc.language.isoeng
dc.publisherSpringer Nature
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleAccelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpublisher version
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-023-43303-1.pdf
Size:
2.77 MB
Format:
Adobe Portable Document Format