Positive Lyapunov exponents and a Large Deviation Theorem for continuum Anderson models, briefly

dc.citation.firstpage3179en_US
dc.citation.issueNumber9en_US
dc.citation.journalTitleJournal of Functional Analysisen_US
dc.citation.lastpage3186en_US
dc.citation.volumeNumber277en_US
dc.contributor.authorBucaj, Valmiren_US
dc.contributor.authorDamanik, Daviden_US
dc.contributor.authorFillman, Jakeen_US
dc.contributor.authorGerbuz, Vitalyen_US
dc.contributor.authorVandenBoom, Tomen_US
dc.contributor.authorWang, Fengpengen_US
dc.contributor.authorZhang, Zhengheen_US
dc.date.accessioned2019-10-25T16:54:18Zen_US
dc.date.available2019-10-25T16:54:18Zen_US
dc.date.issued2019en_US
dc.description.abstractIn this short note, we prove positivity of the Lyapunov exponent for 1D continuum Anderson models by leveraging some classical tools from inverse spectral theory. The argument is much simpler than the existing proof due to Damanik–Sims–Stolz, and it covers a wider variety of random models. Along the way we note that a Large Deviation Theorem holds uniformly on compacts.en_US
dc.identifier.citationBucaj, Valmir, Damanik, David, Fillman, Jake, et al.. "Positive Lyapunov exponents and a Large Deviation Theorem for continuum Anderson models, briefly." <i>Journal of Functional Analysis,</i> 277, no. 9 (2019) Elsevier: 3179-3186. https://doi.org/10.1016/j.jfa.2019.05.028.en_US
dc.identifier.doihttps://doi.org/10.1016/j.jfa.2019.05.028en_US
dc.identifier.urihttps://hdl.handle.net/1911/107512en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier.en_US
dc.subject.keywordAnderson localizationen_US
dc.subject.keywordLyapunov exponentsen_US
dc.subject.keywordLarge deviation estimatesen_US
dc.subject.keywordSchrödinger operatorsen_US
dc.titlePositive Lyapunov exponents and a Large Deviation Theorem for continuum Anderson models, brieflyen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1902.04642.pdf
Size:
140.85 KB
Format:
Adobe Portable Document Format
Description: