Programmed multimaterial assembly by synergized 3D printing and freeform laser induction

dc.citation.articleNumber4541en_US
dc.citation.journalTitleNature Communicationsen_US
dc.citation.volumeNumber15en_US
dc.contributor.authorZheng, Bujingdaen_US
dc.contributor.authorXie, Yunchaoen_US
dc.contributor.authorXu, Shichenen_US
dc.contributor.authorMeng, Andrew C.en_US
dc.contributor.authorWang, Shaoyunen_US
dc.contributor.authorWu, Yuchaoen_US
dc.contributor.authorYang, Shuhongen_US
dc.contributor.authorWan, Caixiaen_US
dc.contributor.authorHuang, Guoliangen_US
dc.contributor.authorTour, James M.en_US
dc.contributor.authorLin, Jianen_US
dc.contributor.orgSmalley-Curl Instituteen_US
dc.date.accessioned2024-08-29T21:11:49Zen_US
dc.date.available2024-08-29T21:11:49Zen_US
dc.date.issued2024en_US
dc.description.abstractIn nature, structural and functional materials often form programmed three-dimensional (3D) assembly to perform daily functions, inspiring researchers to engineer multifunctional 3D structures. Despite much progress, a general method to fabricate and assemble a broad range of materials into functional 3D objects remains limited. Herein, to bridge the gap, we demonstrate a freeform multimaterial assembly process (FMAP) by integrating 3D printing (fused filament fabrication (FFF), direct ink writing (DIW)) with freeform laser induction (FLI). 3D printing performs the 3D structural material assembly, while FLI fabricates the functional materials in predesigned 3D space by synergistic, programmed control. This paper showcases the versatility of FMAP in spatially fabricating various types of functional materials (metals, semiconductors) within 3D structures for applications in crossbar circuits for LED display, a strain sensor for multifunctional springs and haptic manipulators, a UV sensor, a 3D electromagnet as a magnetic encoder, capacitive sensors for human machine interface, and an integrated microfluidic reactor with a built-in Joule heater for nanomaterial synthesis. This success underscores the potential of FMAP to redefine 3D printing and FLI for programmed multimaterial assembly.en_US
dc.identifier.citationZheng, B., Xie, Y., Xu, S., Meng, A. C., Wang, S., Wu, Y., Yang, S., Wan, C., Huang, G., Tour, J. M., & Lin, J. (2024). Programmed multimaterial assembly by synergized 3D printing and freeform laser induction. Nature Communications, 15(1), 4541. https://doi.org/10.1038/s41467-024-48919-5en_US
dc.identifier.digitals41467-024-48919-5en_US
dc.identifier.doihttps://doi.org/10.1038/s41467-024-48919-5en_US
dc.identifier.urihttps://hdl.handle.net/1911/117741en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license.  Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleProgrammed multimaterial assembly by synergized 3D printing and freeform laser inductionen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-024-48919-5.pdf
Size:
6.84 MB
Format:
Adobe Portable Document Format