Endogenous fluctuations in cortical state selectively enhance different modes of sensory processing in human temporal lobe
dc.citation.articleNumber | 5591 | en_US |
dc.citation.journalTitle | Nature Communications | en_US |
dc.citation.volumeNumber | 14 | en_US |
dc.contributor.author | Parajuli, Arun | en_US |
dc.contributor.author | Gutnisky, Diego | en_US |
dc.contributor.author | Tandon, Nitin | en_US |
dc.contributor.author | Dragoi, Valentin | en_US |
dc.date.accessioned | 2024-05-03T15:51:18Z | en_US |
dc.date.available | 2024-05-03T15:51:18Z | en_US |
dc.date.issued | 2023 | en_US |
dc.description.abstract | The degree of synchronized fluctuations in neocortical network activity can vary widely during alertness. One influential idea that has emerged over the past few decades is that perceptual decisions are more accurate when the state of population activity is desynchronized. This suggests that optimal task performance may occur during a particular cortical state – the desynchronized state. Here we show that, contrary to this view, cortical state can both facilitate and suppress perceptual performance in a task-dependent manner. We performed electrical recordings from surface-implanted grid electrodes in the temporal lobe while human subjects completed two perceptual tasks. We found that when local population activity is in a synchronized state, network and perceptual performance are enhanced in a detection task and impaired in a discrimination task, but these modulatory effects are reversed when population activity is desynchronized. These findings indicate that the brain has adapted to take advantage of endogenous fluctuations in the state of neural populations in temporal cortex to selectively enhance different modes of sensory processing during perception in a state-dependent manner. | en_US |
dc.identifier.citation | Parajuli, A., Gutnisky, D., Tandon, N., & Dragoi, V. (2023). Endogenous fluctuations in cortical state selectively enhance different modes of sensory processing in human temporal lobe. Nature Communications, 14(1), 5591. https://doi.org/10.1038/s41467-023-41406-3 | en_US |
dc.identifier.digital | s41467-023-41406-3 | en_US |
dc.identifier.doi | https://doi.org/10.1038/s41467-023-41406-3 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/115609 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer Nature | en_US |
dc.rights | Except where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder. | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.title | Endogenous fluctuations in cortical state selectively enhance different modes of sensory processing in human temporal lobe | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | publisher version | en_US |
Files
Original bundle
1 - 1 of 1