A Review of Intent Detection, Arbitration, and Communication Aspects of Shared Control for Physical Human–Robot Interaction

dc.citation.articleNumberᅠ010804en_US
dc.citation.issueNumber1en_US
dc.citation.journalTitleApplied Mechanics Reviewsen_US
dc.citation.volumeNumber70en_US
dc.contributor.authorLosey, Dylan P.en_US
dc.contributor.authorMcDonald, Craig G.en_US
dc.contributor.authorBattaglia, Edoardoen_US
dc.contributor.authorO’Malley, Marcia K.en_US
dc.date.accessioned2018-07-03T16:08:36Zen_US
dc.date.available2018-07-03T16:08:36Zen_US
dc.date.issued2018en_US
dc.description.abstractAs robotic devices are applied to problems beyond traditional manufacturing and industrial settings, we find that interaction between robots and humans, especially physical interaction, has become a fast developing field. Consider the application of robotics in healthcare, where we find telerobotic devices in the operating room facilitating dexterous surgical procedures, exoskeletons in the rehabilitation domain as walking aids and upper-limb movement assist devices, and even robotic limbs that are physically integrated with amputees who seek to restore their independence and mobility. In each of these scenarios, the physical coupling between human and robot, often termed physical human robot interaction (pHRI), facilitates new human performance capabilities and creates an opportunity to explore the sharing of task execution and control between humans and robots. In this review, we provide a unifying view of human and robot sharing task execution in scenarios where collaboration and cooperation between the two entities are necessary, and where the physical coupling of human and robot is a vital aspect. We define three key themes that emerge in these shared control scenarios, namely, intent detection, arbitration, and feedback. First, we explore methods for how the coupled pHRI system can detect what the human is trying to do, and how the physical coupling itself can be leveraged to detect intent. Second, once the human intent is known, we explore techniques for sharing and modulating control of the coupled system between robot and human operator. Finally, we survey methods for informing the human operator of the state of the coupled system, or the characteristics of the environment with which the pHRI system is interacting. At the conclusion of the survey, we present two case studies that exemplify shared control in pHRI systems, and specifically highlight the approaches used for the three key themes of intent detection, arbitration, and feedback for applications of upper limb robotic rehabilitation and haptic feedback from a robotic prosthesis for the upper limb.en_US
dc.identifier.citationLosey, Dylan P., McDonald, Craig G., Battaglia, Edoardo, et al.. "A Review of Intent Detection, Arbitration, and Communication Aspects of Shared Control for Physical Human–Robot Interaction." <i>Applied Mechanics Reviews,</i> 70, no. 1 (2018) ASME: https://doi.org/10.1115/1.4039145.en_US
dc.identifier.doihttps://doi.org/10.1115/1.4039145en_US
dc.identifier.urihttps://hdl.handle.net/1911/102342en_US
dc.language.isoengen_US
dc.publisherASMEen_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by ASME.en_US
dc.titleA Review of Intent Detection, Arbitration, and Communication Aspects of Shared Control for Physical Human–Robot Interactionen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Losey_AMR_2018.pdf
Size:
7.62 MB
Format:
Adobe Portable Document Format
Description: