Synthesis of a quantum nanocrystal–gold nanoshell complex for near-infrared generated fluorescence and photothermal decay of luminescence

dc.citation.firstpage10701en_US
dc.citation.journalTitleNanoscaleen_US
dc.citation.lastpage10709en_US
dc.citation.volumeNumber6en_US
dc.contributor.authorLin, Adam Y.en_US
dc.contributor.authorYoung, Joseph K.en_US
dc.contributor.authorNixon, Ariel V.en_US
dc.contributor.authorDrezek, Rebekah A.en_US
dc.date.accessioned2015-10-29T18:23:25Zen_US
dc.date.available2015-10-29T18:23:25Zen_US
dc.date.issued2014en_US
dc.description.abstractMultifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl)trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals excited at the same wavelength were used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs are altered and the luminescent output is significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QNヨHGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation.en_US
dc.identifier.citationLin, Adam Y., Young, Joseph K., Nixon, Ariel V., et al.. "Synthesis of a quantum nanocrystal–gold nanoshell complex for near-infrared generated fluorescence and photothermal decay of luminescence." <i>ᅠNanoscale,</i> 6, (2014) Royal Society of Chemistry: 10701-10709. http://dx.doi.org/10.1039/C4NR01721H.en_US
dc.identifier.doihttp://dx.doi.org/10.1039/C4NR01721Hen_US
dc.identifier.urihttps://hdl.handle.net/1911/81988en_US
dc.language.isoengen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by the Royal Society of Chemistry.en_US
dc.subject.keywordnanocrystalen_US
dc.subject.keywordnanoshellen_US
dc.subject.keywordnear-infrareden_US
dc.subject.keywordphotothermalen_US
dc.subject.keywordtheranosticen_US
dc.titleSynthesis of a quantum nanocrystal–gold nanoshell complex for near-infrared generated fluorescence and photothermal decay of luminescenceen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms618158.pdf
Size:
1.93 MB
Format:
Adobe Portable Document Format
Description: