Zero measure spectrum for multi-frequency Schrödinger operators
dc.citation.firstpage | 573 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.journalTitle | Journal of Spectral Theory | en_US |
dc.citation.lastpage | 590 | en_US |
dc.citation.volumeNumber | 12 | en_US |
dc.contributor.author | Chaika, Jon | en_US |
dc.contributor.author | Damanik, David | en_US |
dc.contributor.author | Fillman, Jake | en_US |
dc.contributor.author | Gohlke, Philipp | en_US |
dc.date.accessioned | 2022-12-13T19:11:07Z | en_US |
dc.date.available | 2022-12-13T19:11:07Z | en_US |
dc.date.issued | 2022 | en_US |
dc.description.abstract | Building on works of Berthé–Steiner–Thuswaldner and Fogg–Nous, we show that on the two-dimensional torus, Lebesgue almost every translation admits a natural coding such that the associated subshift satisfies the Boshernitzan criterion. As a consequence, we show that for these torus translations, every quasi-periodic potential can be approximated uniformly by one for which the associated Schrödinger operator has Cantor spectrum of zero Lebesgue measure. We also describe a framework that can allow this to be extended to higher-dimensional tori. | en_US |
dc.identifier.citation | Chaika, Jon, Damanik, David, Fillman, Jake, et al.. "Zero measure spectrum for multi-frequency Schrödinger operators." <i>Journal of Spectral Theory,</i> 12, no. 2 (2022) EMS Press: 573-590. https://doi.org/10.4171/jst/411. | en_US |
dc.identifier.digital | 7525219-10.4171-jst-411-print | en_US |
dc.identifier.doi | https://doi.org/10.4171/jst/411 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/114080 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | EMS Press | en_US |
dc.rights | This work is licensed under a CC BY 4.0 license | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.title | Zero measure spectrum for multi-frequency Schrödinger operators | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | publisher version | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 7525219-10.4171-jst-411-print.pdf
- Size:
- 211.6 KB
- Format:
- Adobe Portable Document Format