Zero measure spectrum for multi-frequency Schrödinger operators

dc.citation.firstpage573en_US
dc.citation.issueNumber2en_US
dc.citation.journalTitleJournal of Spectral Theoryen_US
dc.citation.lastpage590en_US
dc.citation.volumeNumber12en_US
dc.contributor.authorChaika, Jonen_US
dc.contributor.authorDamanik, Daviden_US
dc.contributor.authorFillman, Jakeen_US
dc.contributor.authorGohlke, Philippen_US
dc.date.accessioned2022-12-13T19:11:07Zen_US
dc.date.available2022-12-13T19:11:07Zen_US
dc.date.issued2022en_US
dc.description.abstractBuilding on works of Berthé–Steiner–Thuswaldner and Fogg–Nous, we show that on the two-dimensional torus, Lebesgue almost every translation admits a natural coding such that the associated subshift satisfies the Boshernitzan criterion. As a consequence, we show that for these torus translations, every quasi-periodic potential can be approximated uniformly by one for which the associated Schrödinger operator has Cantor spectrum of zero Lebesgue measure. We also describe a framework that can allow this to be extended to higher-dimensional tori.en_US
dc.identifier.citationChaika, Jon, Damanik, David, Fillman, Jake, et al.. "Zero measure spectrum for multi-frequency Schrödinger operators." <i>Journal of Spectral Theory,</i> 12, no. 2 (2022) EMS Press: 573-590. https://doi.org/10.4171/jst/411.en_US
dc.identifier.digital7525219-10.4171-jst-411-printen_US
dc.identifier.doihttps://doi.org/10.4171/jst/411en_US
dc.identifier.urihttps://hdl.handle.net/1911/114080en_US
dc.language.isoengen_US
dc.publisherEMS Pressen_US
dc.rightsThis work is licensed under a CC BY 4.0 licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleZero measure spectrum for multi-frequency Schrödinger operatorsen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
7525219-10.4171-jst-411-print.pdf
Size:
211.6 KB
Format:
Adobe Portable Document Format