Enhanced Electron Correlation and Significantly Suppressed Thermal Conductivity in Dirac Nodal-Line Metal Nanowires by Chemical Doping

dc.citation.articleNumber2204424en_US
dc.citation.issueNumber2en_US
dc.citation.journalTitleAdvanced Scienceen_US
dc.citation.volumeNumber10en_US
dc.contributor.authorCoughlin, Amanda L.en_US
dc.contributor.authorPan, Zhiliangen_US
dc.contributor.authorHong, Jeonghoonen_US
dc.contributor.authorZhang, Tongxieen_US
dc.contributor.authorZhan, Xunen_US
dc.contributor.authorWu, Wenqianen_US
dc.contributor.authorXie, Dongyueen_US
dc.contributor.authorTong, Tianen_US
dc.contributor.authorRuch, Thomasen_US
dc.contributor.authorHeremans, Jean J.en_US
dc.contributor.authorBao, Jimingen_US
dc.contributor.authorFertig, Herbert A.en_US
dc.contributor.authorWang, Jianen_US
dc.contributor.authorKim, Jeongwooen_US
dc.contributor.authorZhu, Hanyuen_US
dc.contributor.authorLi, Deyuen_US
dc.contributor.authorZhang, Shixiongen_US
dc.date.accessioned2023-01-27T14:47:10Zen_US
dc.date.available2023-01-27T14:47:10Zen_US
dc.date.issued2023en_US
dc.description.abstractEnhancing electron correlation in a weakly interacting topological system has great potential to promote correlated topological states of matter with extraordinary quantum properties. Here, the enhancement of electron correlation in a prototypical topological metal, namely iridium dioxide (IrO2), via doping with 3d transition metal vanadium is demonstrated. Single-crystalline vanadium-doped IrO2 nanowires are synthesized through chemical vapor deposition where the nanowire yield and morphology are improved by creating rough surfaces on substrates. Vanadium doping leads to a dramatic decrease in Raman intensity without notable peak broadening, signifying the enhancement of electron correlation. The enhanced electron correlation is further evidenced by transport studies where the electrical resistivity is greatly increased and follows an unusual T$\sqrt T $ dependence on the temperature (T). The lattice thermal conductivity is suppressed by an order of magnitude via doping even at room temperature where phonon-impurity scattering becomes less important. Density functional theory calculations suggest that the remarkable reduction of thermal conductivity arises from the complex phonon dispersion and reduced energy gap between phonon branches, which greatly enhances phase space for phonon–phonon Umklapp scattering. This work demonstrates a unique system combining 3d and 5d transition metals in isostructural materials to enrich the system with various types of interactions.en_US
dc.identifier.citationCoughlin, Amanda L., Pan, Zhiliang, Hong, Jeonghoon, et al.. "Enhanced Electron Correlation and Significantly Suppressed Thermal Conductivity in Dirac Nodal-Line Metal Nanowires by Chemical Doping." <i>Advanced Science,</i> 10, no. 2 (2023) Wiley: https://doi.org/10.1002/advs.202204424.en_US
dc.identifier.digital2022-Coughlinen_US
dc.identifier.doihttps://doi.org/10.1002/advs.202204424en_US
dc.identifier.urihttps://hdl.handle.net/1911/114250en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleEnhanced Electron Correlation and Significantly Suppressed Thermal Conductivity in Dirac Nodal-Line Metal Nanowires by Chemical Dopingen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2022-Coughlin.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format