Three-Dimensional Networked Nanoporous Ta2O5–x Memory System for Ultrahigh Density Storage

dc.citation.firstpage6009en_US
dc.citation.issueNumber9en_US
dc.citation.journalTitleNano Lettersen_US
dc.citation.lastpage6014en_US
dc.citation.volumeNumber15en_US
dc.contributor.authorWang, Gunuken_US
dc.contributor.authorLee, Jae-Hwangen_US
dc.contributor.authorYang, Yangen_US
dc.contributor.authorRuan, Gedengen_US
dc.contributor.authorKim, Nam Dongen_US
dc.contributor.authorJi, Yongsungen_US
dc.contributor.authorTour, James M.en_US
dc.contributor.orgRichard E. Smalley Institute of Nanoscale Science and Technologyen_US
dc.date.accessioned2016-04-04T21:23:36Zen_US
dc.date.available2016-04-04T21:23:36Zen_US
dc.date.issued2015en_US
dc.description.abstractOxide-based resistive memory systems have high near-term promise for use in nonvolatile memory. Here we introduce a memory system employing a three-dimensional (3D) networked nanoporous (NP) Ta2O5-x structure and graphene for ultrahigh density storage. The devices exhibit a self-embedded highly nonlinear I-V switching behavior with an extremely low leakage current (on the order of pA) and good endurance. Calculations indicated that this memory architecture could be scaled up to a ∼162 Gbit crossbar array without the need for selectors or diodes normally used in crossbar arrays. In addition, we demonstrate that the voltage point for a minimum current is systematically controlled by the applied set voltage, thereby offering a broad range of switching characteristics. The potential switching mechanism is suggested based upon the transformation from Schottky to Ohmic-like contacts, and vice versa, depending on the movement of oxygen vacancies at the interfaces induced by the voltage polarity, and the formation of oxygen ions in the pores by the electric field.en_US
dc.identifier.citationWang, Gunuk, Lee, Jae-Hwang, Yang, Yang, et al.. "Three-Dimensional Networked Nanoporous Ta2O5–x Memory System for Ultrahigh Density Storage." <i>Nano Letters,</i> 15, no. 9 (2015) American Chemical Society: 6009-6014. http://dx.doi.org/10.1021/acs.nanolett.5b02190.en_US
dc.identifier.doihttp://dx.doi.org/10.1021/acs.nanolett.5b02190en_US
dc.identifier.urihttps://hdl.handle.net/1911/88845en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsThis is an open access article published under an ACS AuthorChoiceᅠLicense, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.en_US
dc.rights.urihttp://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlen_US
dc.subject.keywordnanoporousen_US
dc.subject.keywordTa2O5?xen_US
dc.subject.keywordnonvolatile memoryen_US
dc.subject.keywordresistive memoryen_US
dc.subject.keywordtantalum oxideen_US
dc.titleThree-Dimensional Networked Nanoporous Ta2O5–x Memory System for Ultrahigh Density Storageen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acs.nanolett.5b02190.pdf
Size:
3.74 MB
Format:
Adobe Portable Document Format
Description: