A factorial analysis of the combined effects of hydrogel fabrication parameters on the in vitro swelling and degradation of oligo(poly(ethylene glycol) fumarate) hydrogels

dc.citation.firstpage3477
dc.citation.issueNumber10
dc.citation.journalTitleJournal of Biomedical Materials Research
dc.citation.lastpage3487
dc.citation.volumeNumber102
dc.contributor.authorLam, Johnny
dc.contributor.authorKim, Kyobum
dc.contributor.authorLu, Steven
dc.contributor.authorTabata, Yasuhiko
dc.contributor.authorScott, David W.
dc.contributor.authorMikos, Antonios G.
dc.contributor.authorKasper, F. Kurtis
dc.date.accessioned2017-06-14T16:55:02Z
dc.date.available2017-06-14T16:55:02Z
dc.date.issued2014
dc.description.abstractIn this study, a full factorial approach was used to investigate the effects of poly(ethylene glycol) (PEG) molecular weight (MW; 10,000 vs. 35,000 nominal MW), crosslinker-to-macromer carbon–carbon double bond ratio (DBR; 40 vs. 60), crosslinker type (PEG-diacrylate (PEGDA) vs. N,N′-methylene bisacrylamide (MB)), crosslinking extent of incorporated gelatin microparticles (low vs. high), and incubation medium composition (with or without collagenase) on the swelling and degradation characteristics of oligo[(poly(ethylene glycol) fumarate)] (OPF) hydrogel composites as indicated by the swelling ratio and the percentage of mass remaining, respectively. Each factor consisted of two levels, which were selected based on previous in vitro and in vivo studies utilizing these hydrogels for various tissue engineering applications. Fractional factorial analyses of the main effects indicated that the mean swelling ratio and the mean percentage of mass remaining of OPF composite hydrogels were significantly affected by every factor. In particular, increasing the PEG chain MW of OPF macromers significantly increased the mean swelling ratio and decreased the mean percentage of mass remaining by 5.7 ± 0.3 and 17.2 ± 0.6%, respectively. However, changing the crosslinker from MB to PEGDA reduced the mean swelling ratio and increased the mean percentage of mass remaining of OPF composite hydrogels by 4.9 ± 0.2 and 9.4 ± 0.9%, respectively. Additionally, it was found that the swelling characteristics of hydrogels fabricated with higher PEG chain MW or with MB were more sensitive to increases in DBR. Collectively, the main and cross effects observed between factors enables informed tuning of the swelling and degradation properties of OPF-based hydrogels for various tissue engineering applications.
dc.identifier.citationLam, Johnny, Kim, Kyobum, Lu, Steven, et al.. "A factorial analysis of the combined effects of hydrogel fabrication parameters on the in vitro swelling and degradation of oligo(poly(ethylene glycol) fumarate) hydrogels." <i>Journal of Biomedical Materials Research,</i> 102, no. 10 (2014) Wiley: 3477-3487. https://doi.org/10.1002/jbm.a.35015.
dc.identifier.doihttps://doi.org/10.1002/jbm.a.35015
dc.identifier.urihttps://hdl.handle.net/1911/94835
dc.language.isoeng
dc.publisherWiley
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Wiley.
dc.subject.keywordfabrication parameters
dc.subject.keywordfactorial study
dc.subject.keywordhydrogels
dc.subject.keywordpoly(ethylene glycol)-based materials
dc.subject.keywordswelling and degradation
dc.titleA factorial analysis of the combined effects of hydrogel fabrication parameters on the in vitro swelling and degradation of oligo(poly(ethylene glycol) fumarate) hydrogels
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpost-print
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FactorialAnalysis.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description: