Vertical heterostructure of graphite–MoS2 for gas sensing

dc.citation.firstpage1330en_US
dc.citation.issueNumber8en_US
dc.citation.journalTitleNanoscale Horizonsen_US
dc.citation.lastpage1340en_US
dc.citation.volumeNumber9en_US
dc.contributor.authorTripathi, M.en_US
dc.contributor.authorDeokar, G.en_US
dc.contributor.authorCasanova-Chafer, J.en_US
dc.contributor.authorJin, J.en_US
dc.contributor.authorSierra-Castillo, A.en_US
dc.contributor.authorOgilvie, S. P.en_US
dc.contributor.authorLee, F.en_US
dc.contributor.authorIyengar, S. A.en_US
dc.contributor.authorBiswas, A.en_US
dc.contributor.authorHaye, E.en_US
dc.contributor.authorGenovese, A.en_US
dc.contributor.authorLlobet, E.en_US
dc.contributor.authorColomer, J.-F.en_US
dc.contributor.authorJurewicz, I.en_US
dc.contributor.authorGadhamshetty, V.en_US
dc.contributor.authorAjayan, P. M.en_US
dc.contributor.authorSchwingenschlögl, Udoen_US
dc.contributor.authorCosta, Pedro M. F. J.en_US
dc.contributor.authorDalton, A. B.en_US
dc.date.accessioned2024-11-04T16:25:11Zen_US
dc.date.available2024-11-04T16:25:11Zen_US
dc.date.issued2024en_US
dc.description.abstract2D materials, given their form-factor, high surface-to-volume ratio, and chemical functionality have immense use in sensor design. Engineering 2D heterostructures can result in robust combinations of desirable properties but sensor design methodologies require careful considerations about material properties and orientation to maximize sensor response. This study introduces a sensor approach that combines the excellent electrical transport and transduction properties of graphite film with chemical reactivity derived from the edge sites of semiconducting molybdenum disulfide (MoS2) through a two-step chemical vapour deposition method. The resulting vertical heterostructure shows potential for high-performance hybrid chemiresistors for gas sensing. This architecture offers active sensing edge sites across the MoS2 flakes. We detail the growth of vertically oriented MoS2 over a nanoscale graphite film (NGF) cross-section, enhancing the adsorption of analytes such as NO2, NH3, and water vapor. Raman spectroscopy, density functional theory calculations and scanning probe methods elucidate the influence of chemical doping by distinguishing the role of MoS2 edge sites relative to the basal plane. High-resolution imaging techniques confirm the controlled growth of highly crystalline hybrid structures. The MoS2/NGF hybrid structure exhibits exceptional chemiresistive responses at both room and elevated temperatures compared to bare graphitic layers. Quantitative analysis reveals that the sensitivity of this hybrid sensor surpasses other 2D material hybrids, particularly in parts per billion concentrations.en_US
dc.identifier.citationTripathi, M., Deokar, G., Casanova-Chafer, J., Jin, J., Sierra-Castillo, A., P. Ogilvie, S., Lee, F., A. Iyengar, S., Biswas, A., Haye, E., Genovese, A., Llobet, E., Colomer, J.-F., Jurewicz, I., Gadhamshetty, V., M. Ajayan, P., Schwingenschlögl, U., J. Costa, P. M. F., & B. Dalton, A. (2024). Vertical heterostructure of graphite–MoS 2 for gas sensing. Nanoscale Horizons, 9(8), 1330–1340. https://doi.org/10.1039/D4NH00049Hen_US
dc.identifier.digitald4nh00049hen_US
dc.identifier.doihttps://doi.org/10.1039/D4NH00049Hen_US
dc.identifier.urihttps://hdl.handle.net/1911/117992en_US
dc.language.isoengen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/en_US
dc.titleVertical heterostructure of graphite–MoS2 for gas sensingen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
d4nh00049h.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format