Streaming Quantiles Algorithms with Small Space and Update Time
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Approximating quantiles and distributions over streaming data has been studied for roughly two decades now. Recently, Karnin, Lang, and Liberty proposed the first asymptotically optimal algorithm for doing so. This manuscript complements their theoretical result by providing a practical variants of their algorithm with improved constants. For a given sketch size, our techniques provably reduce the upper bound on the sketch error by a factor of two. These improvements are verified experimentally. Our modified quantile sketch improves the latency as well by reducing the worst-case update time from O(1ε) down to O(log1ε).
Description
Advisor
Degree
Type
Keywords
Citation
Ivkin, Nikita, Liberty, Edo, Lang, Kevin, et al.. "Streaming Quantiles Algorithms with Small Space and Update Time." Sensors, 22, no. 24 (2022) MDPI: https://doi.org/10.3390/s22249612.